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1 OBJECTIVES AND STATUS OF THE RESEARCH EFFORT

1.1 Perception of temporal patterns

These experiments continued our studies of how human listen-
ers discriminate temporal patterns (Sorkin, 1990; Sorkin and
Montgomery, 1991). In the present experiments, we extended the
pattern discrimination paradigm to cases when the tonal sequences
were presented in different frequency or earphone channels and
when the sequences overlapped in time. When the sequences were
presented at separate times (or at precisely the same time),
performance was very good. When the sequences overlapped in
time, performance was very poor. These results are consistent
with the operation of a discrimination mechanism (Sorkin, 1990)
that has difficulty in resolving patterns that are presented at
the same time.

In our experiments, the listener is presented with two
arrhythmic tonal sequences. The series of time intervals between
the tone onsets in each sequence, <t 1 1,tI, 1 .... tl >, and
<t2II t22....t >, define the temporal'patterns to be discriminat-
ed.' OA half 6f the trials (SAME trials) these two temporal
patterns are linearly related and hence perfectly correlated (t 10j
= at . + b for all j), and on half of the trials (DIFFERENT
triaT ) the patterns are not perfectly correlated. The listener
must report whether the temporal patterns were the same or dif-
ferent (see figure 1). An important experimental variable is the
correlation between the sequence patterns on DIFFERENT trials,
Pedf"- The task is easiest when Pdiff equals 0 and increases in
difficulty as Pdiff approaches one.

A number of factors affect temporal pattern discrimination
in addition to the temporal correlation. These include the
number and spectral properties of the marker tones, the temporal
properties of the patterns, and the location of the information
within the patterns (for recent studies, see Espinoza-Varas and
Watson, 1986; Bregman, 1990; Hirsh, et al., 1990; Kidd and Wat-
son, 1992; Monahan and Hirsh, 1990; Schulze, 1989; and Sorkin,
1990). The time interval between pattern onsets is a potentially
important factor in affecting pattern processing, but it has not
received much experimental attention, particularly at very brief
intervals.

Sorkin (1990) proposed the temporal pattern correlation (TC)
model for describing how listeners discriminate between monaural
temporal patterns. According to this model, listeners discrimi-
nate between arrhythmic tonal sequences by estimating the corre-
lation between the temporal patterns formed by the two sequences.
The basic stimulus is assumed to be the series of times between
the onsets of the tones in-each sequence: The listener extracts
and stores two lists of interonset times, one for each sequence,
and.then estimates the correlation, pz .t2, between the two lists.
The TC model assumes that the system discards information about
the stimulus sequences that is irrelevant to the correlation
computation, such as overall changes in the presentation rate or
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• the frequency of the tones.

The TC model allows one to predict the effect of transform-
ing or distorting the time intervals in each pattern. For exam-
ple, if all the interonset times in one of the sequences were
multiplied by a constant (thereby producing a uniform temporal
expansion of that sequence), the correlation computed between the
sequences on a trial would be unchanged. Listeners employing a
TC mechanism should be relatively insensitive to such a manipula-
tion. Similarly, adding or subtracting a constant time to all
the intervals in one of the sequences should have little effect
on the correlation calculation and hence on discrimination per-
formance. The effect of the latter manipulation would depend on
the level of internal noise in the TC system.

(a) SAME sequences (b) DIFFERENT sequerces

sequence 1 sequence I

sequence 2 sequence 2

Figure 1. Envelope gating functions for typical tone sequences on SAME (a) and DIFFERENT (b) trials.
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Sorkin and Montgomery (1991) showed that listeners could
perform the discrimination task at a level that was well above
chance, when uniform time transformations were made to one of the
two patterns. All tones in their experiments were 1000 Hz; the
sequences were presented monaurally and the time separation
between the end of the first sequence and the beginning of the
second sequence was approximately 800-ms. Performance decreased
when the second sequence was compressed or expanded in time, and
depended on the magnitude of the time transformation between the
two sequences. The size of the decrease in performance ranged
from 0 to 2 d' units over transformations of 0.6 to 1.6. The
results supported the assumption that there was an internal noise
proportional to the absolute magnitude of the transformation dif-
ference.

These types of temporal transformations are common in speech
and music perception. Evidence supporting the model and the
relationship between temporal pattern discrimination and speech
recognition also has been obtained with hearing impaired listen-
ers using cochlea prostheses (Collins and Wakefield, 1992).
Collins and Wakefield found that their observer's ability to
discriminate temporal patterns depended on the temporal correla-
tion between the two sequences, as predicted by the TC model. In
addition, they reported that the observers' ability to discrimi-
nate arrhythmic sequences was positively correlated with the
observers' speech recognition performance.

1.1.1 Discrimination of delayed temporal sequences (Sorkin,
Montgomery, and Sadralodabai).

In experiment 1, we asked listeners to perform the temporal
pattern discrimination task when the tonal sequences were pre-
sented monaurally and dichotically in different frequency bands.
We wished to test how temporal pattern discrimination performance
depended on the intersequence delay between the patterns. Recall
that the TC mechanism extracts and stores a list of interonset
times for each sequence, and then estimates the correlation
between the two lists. Assuming that the time extraction process
can be performed when the patterns are presented in two separate
frequency and/or earphone channels, listeners should be able to
perform the two-channel pattern discrimination task under differ-
ent intersequence delay conditions. We were particularly inter-
ested in the performance that would result when the sequences
overlapped in time. In experiment 2, we imposed a small, random
temporal transformation on the second of each pair of tonal
sequences. The operation of the assumed two-channel TC mechanism
should be insensitive to such small random expansions or compres-
sions, whether or not the sequences are presented in separate
channels or overlap in time.

The subjects were undergraduate students at the University
of Florida. They were paid an hourly wage plus an incentive for
correct responses. The subjects had normal hearing and performed
the tasks for approximately 2 h per day, 3 days per week. Sub-
jects were seated in a double-walled acoustically insulated

6



F I i I I II I I I I I i

S chamber. The stimuli were presented monaurally or dichotically
via TDH-39 headphones. The conditions were tested in blocks of
100 trials; 8 to 12 blocks were completed in a session. Except
in the uncertain time transformation conditions, all independent
variables were held constant within a block of trials. Feedback
about the correct response was provided after each trial.

The subjects compared pairs of tone sequences composed of 9
sinusoidal bursts of 30-ms. After listening to each pair of
sequences, the subject had to indicate whether or not the tempo-
ral pattern of intertone time intervals was the same or different
for the two sequences. On a random half of the experimental
trials, the temporal patterns were the same, p = 1.0, and on
the remaining trials the patterns were different, Pdiff = 0.2, in
a block of 100 trials. The average duration of a sequence of
tones was 670-ms. The mean intertone interval (time between tone
onsets) was either 80, 120, or 160-ms, and the standard deviation
was 30-ms; the minimum tone interonset time was 32-ms. The mean
and standard deviation of the intertone intervals and the corre-
lation between temporal sequences were controlled by a process
described in Sorkin (1990). There were two groups of subjects in
experiment 1. Group 1 was composed of two male and two female
undergraduates. Subjects in this group ran all conditions at a
mean intertone interval of 80-ms. The dichotic conditions in
experiment 1 were repeated at a later date with a second group of
subjects (Group II, composed of one male and one female under-
graduate). Subjects in Group II were tested at mean intertone
intervals of 80, 120, and 160-ms.

In order to compare discrimination when the patterns over-
lapped in time, the sequences were presented at different fre-
quencies and to different earphone channels. The tone bursts in
the first sequence were 1000 Hz and the tones in the second
sequence were 2300 Hz; they were set approximately equal in
loudness at 71 dBA and 68 dBA, respectively. In the monaural
conditions, both sequences were presented to the right ear. In
the dichotic conditions, the first sequence was always presented
to the right headphone and the second to the left. The onset of
the second sequence (i.e., the first tone) was presented at
intersequence intervals (ISIs) of from 0 to 2.5 seconds after the
onset of the (first tone in the) first sequence. All tone bursts
were shaped by a 4-ms linear rise and decay.

Experiment 1. Effect of two-channel presentation

The purpose of this experiment was to examine how pattern
discrimination depended on the intersequence interval between the
two sequence starting times. In addition, we wished to extend
the pattern discrimination task to the case when the sequences
were presented in different frequency bands and in different
earphone channels.

In the monaural condition, the second sequence (2300 Hz
tones) began in the right earphone channel at a fixed time
(intersequence interval) after the onset of the first sequence
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(1000 Hz tones) in the right channel. The time intervals were 0,
10, 20, 100, 350, 900, and 2500-ms. For the dichotic condition,
the second sequence (2300 Hz) was in the left earphone channel.

Figure 2 shows the effect of intersequence interval on the
average performance of four listeners. The circle symbols (solid
lines) show performance in the monaural conditions and the square
symbols (dashed lines) show the dichotic conditions. The verti-
cal bars are the average of the standard errors of the mean for
the listeners. There were no systematic differences between the
dichotic and monaural conditions. Best performance was obtained
at an intersequence interval of 0 ms., when the two patterns
completely overlapped. The data from all of the listeners showed
that performance began to deteriorate at an intersequence inter-
val of 20-ms and poorest performance was obtained between approx-
imately 100 and 400-ms. At these intervals, the sequences over-
lapped (on average) 85% and 40%, respectively. Performance
improved when the delay was increased to 900-ms, then leveled off
or decreased at a delay of 2500-ms.

4.0

30 0
•30 I

Q)

0
%4

1 .0

0.0. ,_ LA ,,,,I I f I ,,,f I fill,

10 100 1000
Intcrscqucncc Intcrval (rns)

Figure 2. The average performance (d') of the listeners in Group I of experiment 1, as a function of the interse-
quence interval. The circle symbols are the data from the monaural conditions and the square symbols are the
data from the dichotic conditions. The brackets show the average standard error of the mean for the four lis-
teners. The value of the intersequence interval at the origin of the graph is 0-ms.
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Figure 3. The average performance (d') of the listeners in Groups I and II in the dichotic conditions of experi-
ment 1, plotted as a function of the intersequence interval. The data points (symbols) show listener perfor-
mance at mean intertone intervals of 80, 120, and 160-ms. The solid and dashed curves show the performance
of two hypothetical discrimination mechanisms: the Single-Channel (SC) mechanism (upper curves) and the
Waveform-Correlator (WC) mechanism (lower curves) evaluated at mean intertone intervals of 80, 105, and
135-ms (see text).

We ran two additional subjects (Group II) at different
intertone intervals, to check whether the performance drop at
short intersequence delays was specific to the particular inter-
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tone intervals used. The points plotted in figure 3 show the
average performance of the subjects in Group II. The circle,
square and triangle symbols show, respectively, performance at
intertone intervals of 80, 120, and 160-ms for the dichotic
conditions of experiment 1. The x-symbols show the average
performance of the Group I subjects at 80-ms in the dichotic
conditions. The standard errors are left off for clarity. The
80-ms data for the two groups are consistent. The data at 120-ms
and 160-ms show higher levels of performance, but there are a few
reversals. For all conditions, performance was lowest at inter-
sequence intervals of 100-ms and 300-ms. We also ran some other
combinations of intertone interval, mean tone duration, and
standard deviations of the intertone interval of values other
than 30-ms (not plotted). Increasing the average duration of the
intertone interval (by increasing the intertone gaps or the tone
durations) resulted in improved performance at intermediate
intersequence delays, but performance always dropped to a minimum
level by an intersequence interval of 300-ms.

Performance at the 900-ms (and longer) conditions replicated
our earlier results, which we have interpreted as supporting a TC
mechanism. However, the TC model contains no assumptions about
the effects of intersequence delay (or pattern overlap) and so
does not predict the poor discrimination performance at delays
between approximately 20 and 400-ms. This poor performance may
be due to an inability to extract the information from each
channel needed to compute a temporal correlation. If the TC
mechanism cannot function when there is pattern overlap, we need
to explain how the task is performed when the patterns overlap
almost perfectly, i.e., when the intersequence delay was less
than 30-ms and performance was very good. We shall consider two
possible mechanisms for accomplishing this function.

Candidate Discrimination Mechanisms

One possible mechanism for performing the discrimination
task at short delays and when the signals overlap in time, is a
simple, single-channel mechanism. The single-channel mechanism
could be supplanted by the TC process, when the delays were long
enough to allow the system to separately process the inputs on
the two channels. We assume a very simple mechanism: the single-
channel mechanism sums the signals in the two channels prior to
the extraction of any intertone timing information. This yields
a combined signal that is the sum of the envelope gating func-
tions of the two sequences. Information about whether the two
sequences are the same or different is obtained from statistics
based on the properties of the summed single-channel signal.

Consider some properties of the summed envelope gating
function on SAME and DIFFERENT trials, when the intersequence
delay is zero. On SAME trials, the two channels contain the same
gating pattern, so the resulting summed signal would consist of 9
tones of 30-ms duration having a mean intertone gap of 50-ms and
a mean intertone standard deviation of 30-ms. On DIFFERENT
trials, however, the summing operation would produce a signal
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with more than 9 tones and with a mean tone-on duration greater
than 30-ms. These statistics, the number of discrete tones and
the mean tone-,.n (or off) duration, could provide information
about the likelihood that the two sequences had been generated by
DIFFERENT or SAME trials. As the intersequence interval was
increased, the effectiveness of the statistics would decrease.

A computer sipulation of such a single-channel (SC) mechan-
ism was implemented. On every trial, the two statistics describ-
ing the summed signal were computed and combined. The discrimi-
nation performance of the SC model is shown as the three upper
curves in figure 4, for mean intertone intervals of 80, 105, and
135-ms. The important parameter of the model is the assumed
jitter in the system's estimate of the onsets (and offsets) of
the resulting gating function. For all the curves shown, the
standard deviation of this jitter was set at 4-ms. The model's
performance dropped rapidly after an intersequence delay of 10-
ms, for all three values of mean intertone interval. Larger
jitter values resulted in greatly decreased performance at all
intersequence delays.

The three lower curves on figure 4 show the performance of
another simple mechanism: a simple waveform correlator (WC). We
assume that this mechanism can obtain the temporal gating func-
tions from the two channels, multiply the two functions together,
and then integrate the resulting waveform over the duration of
the patterns. The jitter in the system's estimate of the onsets
(and offsets) of the separate channel gating functions was set at
4-ms. As in the SC case, this is the major parameter of the
model. From figure 4, the performance of this mechanism is
poorer than that of the SC mechanism. For both models, there
were small increases in performance at intersequence intervals
that were approximately equal to the period of one intersequence
delay (when the second tone in one pattern was in rough alignment
with the first tone in the other pattern). Otherwise, model
performance fell to a low or chance value by the time the inter-
sequence interval reached approximately 30-ms.

In order to provide further comparisons of these models with
the performance of human listeners, in experiment 2 the temporal
properties of the sequences were randomly varied over trials.
We expected these manipulations to produce large effects on the
performance of the candidate models, but we were not sure what
effect the manipulations would have on the performance of human
listeners at short intersequence intervals.

Experiment 2. Interaction of intersequence delay and temporal
transformation

The sequence discrimination task in experiment 1 was modi-
fied in a manner designed to differentially affect the operation
of the hypothetical mechanisms. This manipulation was a uniform
temporal compression or expansion of all of the times (marker
tones and gaps) in the second sequence, similar to that described
in Sorkin and Montgomery (1991). The magnitude of the transfor-
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mation was fixed within a trial but varied randomly over the
trials within a block.

The temporal correlation mechanism (i.e., a two-channel
process) is relatively insensitive to this manipulation (Sorkin
and Montgomery, 1991). On the other hand, the simple WC and SC
mechanisms should be highly sensitive to this manipulation be-
cause of their dependence on the temporal coherence of the two
patterns on SAME trials.

Experiment 2 was similar to Experiment 1, except for the
additional expansion/compression manipulation. Performance was
assessed at the same p ff and intersequence intervals as in
Experiment 2. All marker tone durations and intertone gaps in
the second sequence of tones were multiplied by a factor chosen
from among the values: 0.8, 0.9, 1.0, 1.1 or 1.2. On each trial

40
Sc

---- wc

0 mon
3,0 o dich

Q)

C)

2.0

0

1.0T

0 .0 rI i i i 1 .2 i. , I. I I , ,
10 100 1000

Inlersequencc Intcrvol (riris)

Figure 4. The average performance (d') of the listeners in Group I, experiment 2 (random temporal transforma-
tion) and of two hypothetical discrimination mechanisms, as a function of the intersequence interval. The circle
symbols are the human data in the monaural conditions and the square symbols are the human data for the
dichotic conditions; the mean intertone interval was equal to 80-ms. The brackets show the average standard
error of the mean for the four listeners. The dashed curves show the performance of a hypothetical Single-
Channel (SC) mechanism (smaller dashes) and a Waveform-Correlator (WC) mechanism (larger dashes),
evaluated at a mean intertone interval of 80, 105, and 135-ms.
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of the experiment, this factor was chosen randomly from the list
of 5 values, and uniformly applied to all the time intervals
within the second sequence. The probability of a particular
transformation being chosen was 0.2. The subject was required to
indicate whether the temporal pattern of tones was the same or
different, ignoring whether the overall tempo of one pattern had
been scaled faster or slower by the time transformation.

Figure 4 shows the effects of the expansion manipulation and
intersequence interval on the average performance of the four
subjects for the monaural and dichotic conditions. The circle
symbols (solid lines) show performance in the monaural conditions
and the square symbols (dashed lines) show performance in the
dichotic conditions. Performance at intersequence intervals of
from 0 to 350-ms was poor and relatively uniform over interse-
quence interval; poorest performance was at 100-ms. All listen-
ers had their highest performance at an intersequence interval of
900-ms. It is evident that the random time transformation led to
poorer performance than the no-transformation condition. The
performance drop produced by the time transformation at long
intersequence intervals was very small, consistent with our
previous results and with the predictions of the TC model (Sorkin
and Montgomery, 1991). On the other hand, the time manipulation
resulted in drastically reduced performance even at very small
intervals.

When the performance of the SC and WC mechanisms was simu-
lated in the random time transformation, very poor performance
resulted. The simulation results are shown as the solid and
dashed lines on figure 4. The poor performance of these mechan-
isms is consistent with our expectations about their sensitivity
to manipulations that disturb the temporal coherence of the
sequences on SAME trials.

Conclusions

The results of experiment 1 indicated that listeners could
discriminate between two temporal patterns, even when the two
patterns were defined by (iso-frequency) tone sequences presented
at different frequencies and to different ears. Presenting the
sequences dichotically did not have much effect on performance.
The good performance observed at long intersequence intervals
under both the no-transform and random-compression/expansion
manipulations, was consistent with the operation of a TC mechan-
ism. Listener performance was very poor at intermediate interse-
quence intervals when the sequences overlapped. We concluded
that the TC mechanism does not operate when the patterns overlap.

Listener performance was very good at very short interse-
quence intervals (when the.two sequences were almost coincident),
so long as the random compression/expansion manipulation was not
applied. Therefore, it is necessary to postulate a mechanism
that (a) can discriminate the sequence patterns at very short
(but not at long) intersequence intervals, and (b) is sensitive
to random compression and expansion of one of the patterns. The
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performance of two candidate mechanisms, the single-channel and
the waveform correlation mechanism, were evaluated and compared
to the observed data. The performance of these simple mechanisms
was qualitatively similar to the listeners' behavior. Both
mechanisms performed poorly when the intersequence interval was
longer than about 30-ms, and both performed poorly when a random
transformation was imposed.

These results suggest a two-part mechanism: When the time
interval between sequence onsets is long enough that the patterns
do not overlap, a likely mechanisn is temporal pattern correla-
tion. Under these conditions, the important stimulus information
is conveyed by the pattern of times between the tone onsets in
each sequence. However, when the time interval between sequence
onsets is brief, the pattern discrimination process is likely
based on the combined (summed or multiplied) inputs from the two
input channels.

Why can't the temporal pattern correlator function when the
sequences overlap? Our argument goes to the basic nature of the
TC mechanism. The hypothesized TC mechanism exemplifies a type
of stimulus processing that Durlach and Braida (1969) have called
"context coding". This type of processing requires the system to
abstract data from each stimulus sequence (i.e., the tone inter-
onset times), and then store this encoded data (i.e., as an
ordered list of times) prior to performing the correlation opera-
tion. The encoded information does not require large capacity
storage, and may be available in memory for many seconds prior to
processing and decision (Durlach-and Braida, 1969; Sorkin, 1987).
We believe that the attentional demands imposed by stimulus
processing and encoding, limit system operation to a single-
channel mode. As a result, in order for the temporal pattern
correlation mechanism to function effectively, the stimuli have
to be presented sequentially in time. We suspect that this may
be a general requirement for processing signals in the context-
coding mode.

1.1.2 Effects of rhythmicity on temporal pattern discrimination
(Sorkin and Sadralodabai).

The rhythmic aspect of a stimulus is an important property
of a temporal pattern. We have begun to analyze the effect of
rhythmic properties on pattern discrimination, in the context of
the TC model. Recently, we reported (Sadralodabai and Sorkin,
1992) on a preliminary study of the effect of rhythmicity on the
discrimination of temporal patterns. Observers were presented
with two sequences of 12 tones and asked to discriminate whether
the two patterns were the same or different. The duration and
the frequency of tones were 25 ms and 1000 Hz respectively. As
in our other experiments, the temporal pattern of each sequence
was determined by the intertone time intervals.

Two kinds of correlation were important in this experiment:
One was the sequence correlation, Pex' the correlation between
the two 12-tone temporal patterns, as defined earlier. The second
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.-type of correlation, the rhythmic correlation, prhy, was defined
as the correlation between the temporal patterns of successive 4-
interval subsequences within the 12-tone sequence. We used pry
as a measure of the rhythuicityof the sequences. For example, a
rhythmic correlation of 0 indicates no repetition of sub-patterns
within a given sequence, and a correlation of 1 indicates
complete repetition of the sub-patterns within a sequence.

The control condition in this experiment replicated the
original correlation experiments, i.e., Prhy=O, or no repetition
within the sequences. Values of the sequence correlation were 0,
0.4, and 0.8. The mean and standard deviation of the intertone
time intervals were 50 and 35 ms respectively. Performance (d')
decreased as the sequence correlation increased, consistent with
the earlier results. The TC model was fitted to this data an,.. the
internal noise was estimated for each listener based on their
performance. Estimated values of a. for observers 1, 2, and 3,
respectively, were 19-ms, 22-ms, anR 19-ms.

We then tested performance in the experimental condition,
with a rhythmic correlation, pr=1. That is, there were 3
repetitions of the 4-interval stbsequences within the sequence
(the last repetition contained only three intervals). The
sequence correlation was varied from 0 to .8, in steps of 0.2.
As can be seen by the plotted points in figure 4, performance was
very good and decreased as the sequence correlation increased.

We constructed a simple extension of the TC model to this
task, using the following argument: Normally, there are two lists
of 11 intertone times that may be used to estimate the
correlation between the temporal patterns. When there are
repeating patterns within the sequence, there will be fewer
(independent) intervals are available for the correlation
estimate. In the prh =1 case, there are only 4 independent
intertone time inter6als, although this pattern of four intervals
repeats 3 times. Thus, when the listener estimates the
correlation in the prh;=l case, only 4 intertone times may be used
instead of 11. This results in an increase in the variance of
the estimate of the between-sequence correlation, and hence a
potential decrease in performance. However, repeating the
patterns within a sequence yields a reduction in the effect of
the observer's internal noise, because the observer's estimates
of the 4 intertone times within a repetition becomes
(statistically) more reliable. Thus, according to the simple
extension of the TC model: in the repetition condition the
effective n is 4, rather than 11, and the effective internal
noise (a•,) is 1/3 of what it was in the non-repetition
condition.

The model's predictions are shown as the smooth curves in
figure 4. The improvement in performance due to the rhythmicity
of the sequences was much better than predicted by the simple TC
model. We also examined performance at rhythmic correlation
values of 0, .5, 1, and at sequence correlations of 0 and .4.
Most of the improvement in performance seemed to occur when the
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rhythmic correlation was greater than 0.5. Results at an inter-

tone interval of 100-ms also were consistent with these results.
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Figure 5. The performance of three observers in the Prhy= 1 condition (circle symbols). The brackets show

phis and minus one standard error of the mean. The smboth curve is the performance of the observer based on

the TC model using a value for the observer's internal noise that was estimated from performance in a separate

Prhy=O condition.
From these experiments, we conclude that the presence of
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rhythmicity plays an important role in a listener's ability to
discriminate between two temporal patterns. Further experiments
will attempt to revise the model so that it can capture the
effects of rhythmic properties of the patterns. It appears that
(when phv=0) the observer may be using a non-optimum strategy for
deciding if the sequences are different; that strategy results in
an improvement in performance when there is information that
reduces the size of the ensemble of possible sequences (e.g. when
Prhy>O). One possibility is to construct conditions for which
Pt,1 t2 is not an optimum strategy and in which the observer may use
information about the possible sequences on a trial.

We have begun a series of experiments to directly assess the
effect of important task variables on the discrimination of
rhythmicity. We continue with our assumption that the
rhythmicity of a pattern is related to the correlation between
temporal units within the pattern (as defined by Prhy in a pattern
that has partially repetitive cycles of m subpatterns of size k,
with a uniform correlation between cycles). The observer's task
in our experiments, will be to discriminate which of two patterns
is more rhythmic. Our initial experiments indicate that
observer's have no trouble with this two-interval-forced-choice
task, and that adaptive techniques provide reliable estimates of
performance.

1.1.3 Effect of temporal position and temporal context (Sorkin
and Sadralodabai).

One weakness of the temporal correlation model is that it
ignores effects occurring at different temporal or serial posi-
tions within the serial pattern. This insensitivity to time-
position is a consequence of the assumption that pattern informa-
tion is encoded independently of the location of that information
within each sequence. Previous reviewers of our research have
pointed out that this lack of sensitivity to conditional time-
position properties may not be plausible, given what is known
about speech and musical perception. For example, two patterns
that have large and distinctive gaps near the end, and relatively
uncorrelated patterns throughout the rest of their patterns, will
probably be judged more similar than two patterns that have more
uniform distributions of gaps, but a higher statistical similari-
ty, i.e., temporal correlation (see Devenyi and Hirsh, 1975;
Espinoza-Varas and Watson, 1986; Hirsh et al. 1990; and Watson et
al. 1975, 1990). It is evident that a model that relies on a
temporal correlation parameter that is uniformly defined over the
pattern duration, probably will not be able to adequately specify
the discriminability of the patterns.

To remedy this weakness of the TC model, we have begun to
directly study the distribution of an observer's responses
(different/same) as a function of both the position and the
properties of the temporal intervals in the two stimulus sequenc-
es (Sadralodabai and Sorkin, 1993). This analysis is similar to
those by Berg (1989, 1990), Berg and Green (1990), Lutfi (1989,
1990, 1992), and Sorkin et al. (1987), using the sample-discrimi-
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nation procedure. Although our procedure is not formally identi-*
cal to the sample-discrimination procedure, these techniques will
enable us to determine the differential weight employed by ob-
servers at different.positions in the sequences.

On each trial, the observer's response and the sequence of
intertone intervals in each sequence, is recorded. We compute a
COSS-type function of the difference (and the product) of the
corresponding intervals in each sequence. Specifically, we
compute the probability that the observer has responded 'differ-
ent', conditional on the magnitude of the difference between the
intertone intervals at that serial position, and conditional on
the magnitude of the product of the intertone intervals at that
serial position.

That is, for DIFFERENT trials, and across all values of
It2,J-t10Jl for j~i, we will compute (for each position, i):

p(respond "DIFFERENT" I jt 2,1-t 1, ) (1)

and

p(respond "DIFFERENT" I t 2,.tli ) (2)

We assume that the observer's decision on each trial is
based on either

Zai(It 2,i-t 1 1) or Za,(t 2,.tl,). (The latter statistic

is a version of the TC model.) We use the standard deviation of
the resulting distributions as an estimate of the observer's
decision weight at position i. (The reader may wonder whether
the properties of the resulting distributions can be used to
determine which statistic was being used by the observer. From
simulations, we know that the standard deviation of the dif-
ference and product distributions is approximately the same.
Although the shape of the distributions are different, the number
of trials required to tell which statistic was used probably is
not feasible in a human experiment.)

Figure 6 shows some data obtained on a group of listeners
using sequences of 4 and 8 tones, and analyzed with the modified
COSS procedure. Relative weight is plotted as a function of the
serial position of the interval in the sequence. The data in-
dicate that the first position had the greatest influence on the
listener's response. We have begun to study the changes in the
serial position weights as a function of having a cycle of four
intervals repeat within the sequence. The results so far indicate
that the the weighting pattern depends on the rhythmicity of the
sequence as well as on the.mean duration of each interval.

We plan to perform these analyses using sequences in which
the intertone intervals have non-uniform means or non-uniform
standard deviations, at different serial positions in the se-
quence. Sequences generated by the latter procedure will have
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serial positions that contain more information relevant to the
task (in the sense of Lutfi's 1992 analysis and his Proportion of
Total Variance hypothesis). Such positions should show higher
observer weights than less variable intervals. We can also test
whether the distinctiveness of the interval in the sequence,
rather than its informativeness or serial position, commands
higher observer attention. Sequences will be constructed in
which the intervals in some serial positions have higher mean
durations; these positions should show higher observer weights
than the positions having shorter mean intervals, in the sense of
Kidd and Watson's (1992) Proportion of Total Duration hypothesis.
These experiments should provide specific, quantitative data on
the effects of serial-context factors on temporal pattern dis-
crimination.

Finally, the temporal pattern correlation model has not been
tested with specific subsets of temporal patterns. For example,
Povell and Essens (1985) and others have argued that there is a
natural organization or structure to certain temporal sequences,
depending on the relationship between the position of occurrence
of the tones in the sequence and the basic sequence timing.
Suppose that the duration of the base cycle of a repeating
sequence is 760-ms, each containing 8 tones of 40-ms duration,
and the smallest inter-tone gap is 40-ms. Any tone must start on
one of the 16 possible starting times defined by those 40-ms
(discrete) periods. Assume that all patterns have a tone at the
first period. Certain sequences, by virtue of the specific
starting times of the tones, will be perceptually more
'structured' than others. We will conduct pattern discrimination
experiments with different subsets of these fully random
sequences, using different algorithms for selecting the patterns,
such as for metricity and nonmetricity. Using the Pattern
Correlation model, we will evaluate the statistical and empirical
aspects of these effects.

1.2 Analysis of Group Detection Systems

We have been using the theory of signal detectability to
develop models for describing how groups of detection systems can
detect signals. These models are based on the theory of signal
detectability, specifically on multi-channel auditory detection
(Berg, 1990; Green, 1992; Durlach et al., 1986). The models
enable us to make quantitative predictions relating group signal
detection performance (accuracy, d'rm,; bias, Pgr ; and
efficiency, ngr ) to a group's size, he mean an variance of
member d', the"orrelation among member judgments, the relative
influence of members on the decision), the group decision rule,
and the degree of member interaction. These analysis are relevant
to the training of groups, teams, and crews, as well as to the
design of systems composed of human operators and machine detec-
tors, such as alarm and alerting subsystems.
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1.2.1 Analysis of the Ideal Group (Sorkin and Dai, in press).

A simplified concept of the multi-channel detection/decision
process is illustrated by the system shown in figure 7. This
system is composed of a group of detectors which must decide
whether a signal or no-signal event was present on a trial. Each
detector monitors a distinct channel and each channel is subject-
ed to several noise sources: One of these sources is unique to
each detector (in the figure: n., n2, n3), and the other sources
are common to two or more detectors (e.g. n,,3 , n,3). Each
detector computes a statistic, X., that represents' the detector' s
estimate of the likelihood that 6he signal was present on that
trial. The list of estimates <X1 , X2,...X > is the group estimate
vector, X.. The system's task is to decide, given the group
estimate vector, whether or not a signal was present.

All the noise sources are assumed to be additive, normally
distributed (Gaussian) random variables having zero means and
variances of a2 , oa, a2, U2 3 and a2 •; the magnitude of the
variances are independent o 'which stimulus event occurred.
Thus, the statistic, X1 , is a normally distributed (Gaussian)
random variable, having a mean of zero on noise trials and a mean
of A, on signal trials. The difference between the means of X,
given signal and given no-signal, is the mean vector, A = <I,
112 , - Am>

The variance of X. is equal to the sum of the variance of
its noise inputs. For detector 1 we have

Var(X,)= 02 + 01.2.3 + c0o (3)

The covariance of the estimates of any pair of detectors,
Cov(X1 ,Xj), is equal to the sum of the variances of the noise
sources common to those two detectors. For detectors 1 and 3:

Cov(X,,X3 ) = 0,2,3 + 1,3 (4)

The entries of the covariance matrix, Z, summarize the values of
these variances and covariances. For the specific system shown
in figure 5, we have[ 0 +• .2,3+G1 .3a .2,3 a; .2.3+01 .3]

z 01 2,3 12+01 .2.3 1 ,2.3 (5)

1,, 3 ., 1,+2,3
01 .2,3+01 3 01 .2,3 3 +02 .2,31 ,3 J

In the psychoacoustics literature, this detection task is
framed as the problem of detecting a brandband stimulus that has
components in m channels, where the channels are defined in terms
of spectral, spatial, or temporal dimensions. The multi-channel
auditory signal detection problem has been discussed by Berg
(1989, 1990), Berg and Green (1990), Durlach et al. (1986), and
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Figure 7. A simplified version of a group detection system. Each detector has a unique source of noise, plus a
noise that is shared with one or both of the other detectors. The noise sources are independent, Gaussian
random variables, with zero means and specified variances; the variances are independent of which stimulus
event occurred. Ihe decision variable, Z, is the weighted sum of the detector estimates.

stimulus signal: <Ui, A 22 3>

or no-signal: <0, 0, 0>

noise
sources

njdet. n2  det. n3  det.

n 1 3 1

nl'3 T"

detector
estimates X1 X2 X3

weights Y2

EaiXi

decision variable 3

response "signal", "no-signal"

Green (1988, 1992). Note that the task also can be framed as a
group detection problem, in which a group or team of detectors
make the m observations and must arrive at a decision about the
existence of signal.

An optimal detector employs a decision variable, Z, that is
a monotonic function of the likelihood ratio statistic. As long
as the covariance matrix has the same form for the signal and
no-signal distributions, an optimal decision variable is a
linearly weighted sum of the detector estimates (Ashby and Mad-
dox, 1992), i.e.,

22



Z = 1' E-1 IA + k (6)

where X* is a row vector, E-1 is the inverse of the covariance
matrix, p is a column vector, and k is a constant. Let the
vector, a = Z p, then an equivalent decision variable is

a

Z = Z a, X, (7)

where the a, are optimal weights applied to the estimates, X
The optimal weights are expressed in terms of the inverse of the
Covariance matrix and the mean vector. The index of
detectability, d' I I.roup, for this system is (Mahalanobis, 1931):

d' ~ r= [ pz' E1  ]% (8)
d 'Ieal GroupE_(8

where Al is a row vector.

Suppose that two sources of noise enter each detector, one
having a variance of 2., which is common to all the detectors,
and the other having a variance of 02, which is unique to each
detector. All of the off-diagonal elements of the covariance
matrix are equal to 2 a. The optimal weights, a,, for this case
are (Durlach et al., 086):

1 D n DA,
a1 = JA1 ( -) -E (9)

aý a, j+i a02a2
f j I

S1

where D = ao2(l+a Z - )E (10)
i=1 02

The detectability index, d', (Durlach et al., 1986) is:

a IA M I.
d' I=aGroup E( -) 2 - D(E - )2]1 (11)

I I

The equation can be simplified further by assuming that the
unique variance components are equal in magnitude across the
detector array, that is

oa= oa, for all i (12)

By definition, the correlation between any pair of detectors is
given by:

r = o/(or+ao) (13)

Because the magnitude of the unique and common variances are
uniform over the array of detectors, the detectabilities of the
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individual detectors, d?, are characterized only by the values of
r.. We can normalize each detector's total variance by setting

a-| +-l = 1, then

d= p, / (on+a2 = . (14)

Then we have the important relationship:

m Var(d') m (a,) 2  (d' ffi ( + } (15)
1- r l- r+mr

where d' is the mean of the individual d's, Var(d') is the
variance of the individual d's, m is the group size, and r is
the inter-detector correlation.

As part of his masters thesis project, Chris Hays and I have
begun to run experiments with human subjects to test the basic
predictions of the Ideal model. Initially, we are running groups
of from 2 to 8 observers in a signal detection task. After each
observer is presented with a (partially correlated or uncorrelat-
ed) observation, a random member of the group is asked to give
the group decision about the presence of signal or noise on that
trial. Interaction is completely free, although there is a time
constraint on answering. We will evaluate the efficiency of
group and individual decision making in this task, as well as
compute the weight of each group members input on the group
decision.

1.2.2 Optimal Binary Groups (Sorkin and Dai, 1993; Sorkin and
Dai, submitted)

We have begun to study the performance of arrays of detec-
tors when the outputs of the detectors are binary in nature.
Given knowledge of the group members' individual d's and criter-
ia, a group "supervisor" could compute exactly the likelihood of
signal and noise given each possible binary pattern obtainable in
the group members' response array. These could be ordered in
terms of likelihood ratio, and appropriate responses made to
particular patterns.

In general, the particular value of group hit and false
alarm rate would depend on the supervisor's criterion--as well as
on the criteria of the individual detectors. We estimated the
group d's obtainable under some simple assumptions about the
interdetector correlation and d' and c statistics. Let r = 0 and
var(d') = 0 (and d'i=l). Further suppose that all detectors
employ the same individual response criterion, c. Now, all the
information in the group binary response pattern is given by the
number of detectors voting-"yes". We can fix c and examine the
hits and fas obtainable from varying the number of yeses needed
for a group yes response. Likewise, we can fix the majority rule
and examine the hits and fas obtainable by varying the value of
c. In both cases, we obtained ROC curves which resemble normal-
normal ROC curves. (Clearly, all the curves must go thru 0,0 and
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1,1.) The highest group performance is obtained with a majority
rule of 0.5.

Note that in the absence of a group strategy to weight by
d', any variance in member d' will increase the difference bet-
ween the majority strategy and the ideal. We believe that human
groups have evolved various strategies for acquiring information
about the d's and c's of the individual members. A notable
example is as the jury deliberation system. We have developed
some models of such groups, using iterative polling and shifting
of the individual detector criteria. We think that these models
are of potential interest to a range of detection systems, in-
cluding those involving arrays of neurons and arrays of jurors,
and alarm systems, where decisions may depend on arrays of binary
outputs and where adjustments may be made in the individual
detector criteria for firing.

1.2.3 Limited interaction groups (Sorkin and Crandall, Sorkin
and Dai).

Groups vary in the degree of interaction among group members
that occurs during deliberation. At one extreme is the hypothet-
ical Ideal Group, in which it is assumed that members freely
discuss all matters relevant to communicating the values of X.
and A., and then put this information into a form appropriate for
calcuiation of the optimum response. The other extreme is the
group with no interaction among members; the members of this
group simply make their private observations and then take a
single vote. In between these two extremes are real groups such
as committees, juries, and teams, where customs or formal rules
dictate how group members communicate and how member judgments
are combined to form the group decision.

One type of formally limited group interaction consists of
an iterative series of ballots and discussions, such as occurs in
an American jury. The group has a discussion, takes an open
ballot consisting of the binary responses of each member, and
counts the resulting votes. This sequence is repeated until a
specified majority vote is reached, or until a time limit is
exceeded.

In terms of detection theory, the group operates as follows:
As a consequence of observing the stimulus evidence and prior to
interaction as a group, each member makes an estimate, X,, of the
likelihood of signal. This estimate leads to a vote, RV, of
either signal, S, or no-signal, NS. The vote is based on the
value of the member's observation, X,, and the member's pre-
deliberation criterion, c,. The votes are tallied and, if una-
nimity is not reached, the group proceeds to discussion. During
the discussion, each member acquires information about every
other member's response, as well as about every each other's
detectability, d!, and criterion, c,. Each member then uses that
information to compute a new criterion. Thus, each member shifts
his or her own criterion as a function of the response (Ri), the
estimated detectability (d!), and the bias (c,), of the other

25



team members. After a new criterion is computed, the member's
original observation, X,, is again compared with it, and a new
response is made. This process is repeated until a decision or
time deadline is reached. This process may be characterized as
as a fixed-rule, dynamic network.

The rule for shifting a member's criterion follows from an
analysis of aided detection described by Robinson and Sorkin
(1985), Sorkin and Woods (1985), and Murrell (1977). An example
of this system is the case of two detectors, one is a human
detector and the other is an auxiliary "alarm" detector. These
detectors operate together to perform a detection task. The
human detector incorporates the binary response of the alarm
detector to decide whether a signal or no-signal event has
occurred.

According to Robinson and Sorkin (1985), the human detector
incorporates the alarm detector's output by employing two
different response criteria, depending on whether the alarm
detector has responded signal (S) or no-signal (NS). These
contingent criteria are computed using the-following formula:

p(ns) p(RIns)
S(given output it from atarm detector)= V- (16)

p(s) p(Rjs)

where p(s) and p(ns) are the prior probabilities of signal and
no-signal, respectively, and p(RIs) and p(Rins) are the
probabilities that the alarm detector has made response R, given
signal or given no-signal, respectively. V is the ratio of
payoffs to the human detector for the four possible event
outcomes:

V = [v(NS-ns)-v(S.ns)]/[v(S-s)-v(NS.s)] (17)

where v(S-s) is the payoff for correctly-decide-signal, v(S-ns)
is for incorrectly-decide-signal, v(NS.ns) is correctly-decide-
no-signal, and v(NS-s) is incorrectly-decide-no-signal.

Equation 16 is based on the principle that the human detec-
tor should compute the posterior probability of S (and NS) given
the alarm detector's response, and assumes that the human wishes
to maximize expected value. That is, after receiving information
about the alarm response, the human detector updates her prior
probability by substituting the posterior probability based on
the alarm detector's response. This updated prior probability is
employed in recalculating the human detector's criterion. Note
that in order to calculate p(Rls) and p(Rjns), it is necessary
for the human detector to know the d' and criterion of the alarm
detector.

If there are m independent alarm detectors,
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p(ns) p(R1 Ins) p(R2Ins) p(R, Ins)
S. v ...... (18)

p(s) p(R1 Is) p(R 2 Is) p(R Is)

where Ri is the response of alarm detector i.

The team situation is much more complex than the alarm
detector paradigm because, (1) each detector's output goes to all
the other detectors, (2) the system decision is based on the
outputs of all of the detectors rather than just the one (the
human's), and (3) the system decision is dynamic--the set of
detector responses changes over time as each detector modifies
its decision to accommodate the influence of the others.

We have implemented this dynamic network algorithm in a
computer simulation of team decision making. The most obvious
group behavior produced by this algorithm is the tendency for the
number of votes favoring the majority position to increase during
deliberation. This occurs because a preponderance of say, S
votes, shifts the average member's criterion toward making an S
response. Responses from members having higher d's produce more
criterion shift than responses from less sensitive members, and a
member's S vote that was made using a lax criterion for S counts
less than one that was made using a very strict criterion.

We can summarize some qualitative aspects of the model
simulations that we have run so far. First, on most trials the
algorithm results in a decision toward the position initially
favored by a majority of members. Second, sometimes members'
criteria oscillate over successive ballots. Third, occasionally
there is a reversal of the initial majority vote. Fourth, on
occasional trials a decision is not reached by the time our
arbitrary stopping point is reached. These qualitative aspects
of the model's behavior during group deliberation are consistent
with those found in previous empirical studies and simulations,
for example, by Kalven and Zeisel's (1966) study of the American
jury, and of small group studies described by Saks (1977) and
Penrod and Hastie (1980).

In order to perform the criterion-shift calculations
required by the contingent criterion model, each team member must
know the vote, detectability, and criterion of each of the other
members. In some groups, limitations on member communication
prevent members from acquiring this information.. One group of
this type is the Delphi Technique Group (Hastie, 1986; Gustafson
et al., 1973), in which efforts are made to maintain the
anonymity of members in order to prevent undue influence or the
suppression of discussion by group members holding positions of
authority. After balloting, each member is provided only with an
aggregate vote that shows the number voting S and NS; no
information is provided about individual d. and c.. It is easy
to add such informational constraints to a limited interaction
version of the contingent criterion model. Because specific
information about the other members is not available, each member
must use an average estimate for the sensitivity and criterion of
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the members giving the number of S and NS votes. Thus, calcula-
tions of p(Sls) and p(Slns) are based on the group member's
estimate of the average d' and criterion for the rest of the
group. As in the Contingent Criterion case, a preponderance of S
votes tends to shift members' criteria toward making an S
response more likely.

Figure 8 illustrates the results of some simulations of
different types of groups using different decision rules. The
figure is a plot of group d' versus the size of the group. From
best to worst performance, the different groups are: Ideal Group,
Contingent Criterion Group-unanimous decision, Contingent Cri-
terion Group-3/4 majority, Contingent Criterion Group-2/3 majori-
ty, Delphi group-2/3 majority, and Single Ballot-2/3 majority.
All groups were assumed to have an inter-member correlation of 0,
and the same distributions of member d' and P. Substantially the
same results occur when the intermember correlation is greater
than zero, but the differences are smaller.

We were concerned about use of the d' measure for
characterizing the performance of these complex group detection
systems. If the variance of the hypothesis distributions were
not approximately equal, d' would not be an adequate measure,
particularly for P<<1 or P>>1. Metz and Shen (1992) analyzed
group detection without the requirement for the equal variance
assumption. They predicted the accuracy gain in reading
diagnostic images, such as X-films, that result from replicated
readings by the same or different readers (all judgments were
rated equally). Rather than computing a group d', they showed
how the parameters of the general binormal Receiver Operating
Characteristic depend on the number of readings and the within-
reader and between-reader variation.

To check on the equal variance assumption for our models, we
plotted the group hit and false alarm probabilities that were
obtained in several conditions of simulations using different
values of mean P, on Receiver Operating Characteristic (ROC)
curves (p(Sls) versus P(Sins)]. The resultant curves were quite
similar to equal-variance, single-detector ROC curves. Thus, at
least under the conditions evaluated by our simulations and
proposed for the human experiments, the use of the d' and
measures appears to be appropriate for summarizing the
performance of group systems.
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1.3 Signal detection with multi-element displays

In these experiments, we studied an observers' ability to
use multiple independent sources of visual information in a
signal detection task. The objectives were to determine the
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observer's efficiency at using information from different spatial
locations of the display and to determine the effects of display
coding and arrangement.

1.3.1 Observer sensitivity to element reliability (Montgomery
and Sorkin, submitted).

Visual displays are commonly used to convey system informa-
tion, such as air traffic flow or the status of a production
line, to a human decision maker. A complex visual display may
include several subordinate displays or display "elements." Each
display element provides a potential source of information for
the human operator. However, it may be impossible for the opera-
tor to obtain useful information from more than a few of the
display elements at one time. This problem may be minimized if
the operator can prioritize the display elements in terms of
their criticality and informativeness, and if the operator can
allocate his or her attention accordingly. This study examined
ssveral factors that affect an operator's ability to allocate
attention to display elements that are differentially informa-
tive.

In a previous experiment (Sorkin, Mabry, Weldon, & Elvers,
1991), observers examined a multi-element display and then re-
ported whether the display represented the occurrence of a signal
or nonsignal event. Using a technique derived from the Theory of
Signal Detectability (TSD, Green & Swets, 1964), Sorkin et al.
estimated the importance or weight the observer assigned to each
element of the display in making a detection decision (Berg,
1989, 1990). An optimal decision-theoretic observer weights the
input from each element according to the element's informative-
ness or reliability; highly reliable display elements are weight-
ed more highly in the detection decision than less reliable
elements (Durlach, Braida, & Ito, 1986; Berg, 1990; Berg & Green,
1990). Berg (1990) developed a measure, weightinQ efficiency,
for assessing how accurately an observer weights display elements
by their differing reliabilities.

In the Sorkin et al. (1991) study all display elements were
equally informative; hence, the observers should have weighted
each element equally in their detection decisions. When the
observation durations were long, the resulting weights were equal
across the spatial array of display elements. However, when the
observation durations were brief and the display coding was
complex, the highest decision weights were associated with dis-
play elements in the center of the visual field, near the observ-
er's fixation point. The lowest performance was obtained in
conditions where the weighting functions were most highly peaked.
Sorkin et al. (1991) concluded that, under difficult information
processing conditions, an observer's allocation of attention is
restricted to the central portion of the display.

This interaction between the difficulty of the task and the
availability of information from different regions of the display
is not surprising. A number of variables are known to affect an
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observer's ability to obtain information from the elements of a
complex visual display. These include the number (Perrott et
al.; 1991) and spacing (Andre & Wickens, 1988) of irrelevant, or
distracter, items found in the visual field, the type of display
code (Boles & Wickens, 1987; Legge, Gu, & Luebker, 1989; Sander-
son, Flach, Buttigieg, & Casey, 1989; Sorkin et. al., 1991), and
task complexity (Williams, 1982).

When the stimulus durations in the Sorkin et al. (1991)
experiment were long (more than 500 ms), all display element
weights were equal, indicating that the observers could process
information from all regions of the display. Since the reliabil-
ity of all the elements was also equal, an equal weight strategy
was optimal for that task. An important question is whether an
observer can employ optimum weights when the reliabilities of the
elements are not equal across the visual array. Obviously, the
ability to match decision weights to the element reliability is
necessary if the observer is to prioritize the display elements
according to their importance to the task.

When an informational source does not-provide a consistent
report of an unchanging event, the source is not very reliable.
For instance, if a sensor measures a specific luminance value to
be x at one time and x ± n on a subsequent reading, the sensor is
showing variability in its measurement. Thus, this sensor would
be less reliable than one which produces a consistent measure
across time. A person forming a decision based on this informa-
tion should place greater weight on the more reliable source,
However, evidence suggests that people tend to overrate the
importance of unreliable sources (Schum, 1975). Wickens (1984)
states that when people are confronted with sources which are not
equally informative, they perform the task "as if" all sources
were equally reliable.

In the present study, we tested whether observers could use
differences in display element variability to identify the reli-
abilities of different sources and whether they could use this
information in forming their detection decisions. In addition,
we hoped to determine whether using reliability information
imposed a significant amount of additional processing "overhead"
on the observer, and whether selected display factors could
reduce performance decrements related to this overhead.

As in Sorkin et al. (1991), the observers in the current
study performed a multi-channel visual detection task. On each
trial of the experiment, observers were presented with a display
consisting of nine display elements. The display elements were
nine vertical line-graph gauges arranged in a horizontal array
(see figure 9). The values displayed on the line-graph gauges,
<x1, XV.., x>, were determined by independent, normally dis-
tributed, ranaom variables. On a signal trial, the values of the
nine elements were selected from a distribution with a mean of A,
and a standard deviation of a. On a noise trial, the values were
drawn from a distribution with a mean of An and a standard devia-
tion of a, where An < As. The observer's task was to decide
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whether the data displayed had been generated from the signal or
nois distribution.

The reliability of different display elements was controlled
by manipulating the variance of the distributions from which the
element values were sampled: high reliability elements were
sampled from distributions with low variance and low reliability
elements were sampled from distributions with high variance. A
high reliability source would be analogous to an instrument which
showed measurements that were consistent over time, whereas a low
reliability source would be analogous to an instrument whose
readings varied widely over time. The variance of a display
element at a particular spatial position depended on the experi-
mental condition, but was always the same on signal and noise
trials. Table 1 illustrates the mean and standard deviations for
a nine element display in which odd and even elements alternate
in their level of reliability. The detection performance of a
hypothetical ideal observer, based on that display element is
shown on the bottom row of the table (the Appendix provides
details of the theory).

TABLE I

Means and standard deviations for the nine elements where the soirces alternate in reliability; the even ele-

ments have the highest reliability.

eleient 1 2 3 4 5 6 7 8 9

Ps 5.0 5.0 5.0 5.0. 5.0 5.0 5.0 5.0 5.0

o 1.5 0.75 1.5 0.75 1.5 0.75 1.5 0.75 1.5

noise

n . 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

o 1.5 0.75 1.5 0.75 1.5 0.75 1.5 0.75 1.5

Pre ic:ed d' 0.67 1.33 0.67 1.33 0.67 1.33 0.67 1.33 0.67
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We were interested in whether observers would be sensitive
to the reliability of individual elements in the absence of
additional cues to element reliability. That is, can observers
estimate (and employ) information about element reliability based
only on the variability of the readings from individual display
elements and on feedback about the signal and noise events? To
answer that question, we introduced conditions in which the
relationship between element spatial position and reliability was
either random or fixed over a block of 200 trials. In the random
block condition, the spatial position of the high reliability
display elements varied randomly over trials. Thus, in this
condition observers could not-use the trial-to-trial variability
of a spatial element to identify which sources were most reli-
able. In the fixed block condition, however, the observer could
estimate the variance of the element readings from the first k
trials of a block.. Using that estimate, the observer might be
able to partition the elements into those with high and low
reliabilities. If that process led to the assignment of higher
weights to the more reliable elements, the observer's weighting
efficiency would be enhanced in that condition relative to the
random block condition.

A third experimental manipulation was included to test the
efficacy of providing a cue to element reliability. In an audi-
tory task similar to the one used in this study, Berg (1990)
found that observers were better at weighting sources according
to reliability when the most reliable tones were much louder than
the less reliable tones. The loudness cue was much less effec-
tive when reversed, i.e. when a louder cue indicated a lower
reliability. Berg's results suggest that under some conditions
cuing element reliability (e.g., with intensity or color) may aid
observers in accurately weighting display sources by their
importance.

Cues such as size, intensity, color, and movement are often
incorporated in display design to draw attention to specific
items in a display. For instance, researchers have found that
correct utilization of color coding (Christ, 1990; Fisher & Tan,
1989) can reduce search time in locating an item in a display.
Furthermore, Wickens and Andre (1990) showed that color coding
items in an object display lead to improved accuracy in recalling
the specific value associated with a given item. Given these
results, we predicted that the efficiency of the observer's
weighting strategy should be higher for a condition in which a
luminance cue signalled the element reliability.

In the luminance cue condition, the luminance of the display
element was either high or low in accordance with the reliability
(high or low) of the element. The spatial position of differen-
tially reliable sources varied randomly across trials. We ex-
pected that luminance would provide a natural code for allocating
observer attention and hence weight, to the high reliability
elements. If that were the case, the efficiency of the observ-
ers' weighting strategy would be much higher in a cued than in an
uncued condition.
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Finally, the stimulus duration and the particular spatial
arrangement of element reliabilities were also expected to in-
fluence observers' ability to match weights to the element reli-
abilities. The results from the Sorkin et al. (1991) study
suggested that 233-ms was sufficient time for observers to uti-
lize information from as many as nine, equally reliable, graphi-
cally coded display elements. However, it is possible that sens-
ing the element reliabilities and differentially weighting the
elements, could require some additional processing steps or
"overhead" by an observer. A duration of 233-ms may be at the
margin of an observer's ability to extract the information
needed to discriminate and employ differences in element reli-
ability. For example, a slower, serial search may be required to
both extract the reliability information and to weight the infor-
mation from the elements. In that case, it might be advantageous
for an observer to ignore reliability, when processing short
duration stimuli, and to weight all elements equally. Our ex-
periments tested three levels of stimulus duration (150, 400 and
800-ms). We expected that weighting efficiency would be greatest
at long stimulus durations (400-ms and 800-ms) and poorest at the
shortest duration (150-ms).

Observer sensitivity to element reliability also may be
affected by the spatial arrangement of element reliability. If
attention is distributed more effectively among spatially contig-
uous than separated items, grouping sources similar in reliabili-
ty should aid performance. Posner, Snyder, and Davidson (1980)
found that simple reaction time to detect a light at a second
most likely position was facilitated only when this item was
adjacent to a cued location (the most likely target location).
When the second most likely position was separated by more than
one location, detection speed was not facilitated. Thus, weight-
ing efficiency should be better for displays with elements
grouped by similar reliabilities than for displays that distrib-
ute element reliabilities across the array.

Four University of Florida students with normal, or correct-
ed to normal, visual acuity participated as observers in this
study. One subject, S2, was later discovered to be color defi-
cient. Another subject, S4, had extensive experience with the
task. Subjects were paid an hourly wage plus a bonus based on
performance.

Observers were seated in a sound isolated booth approximate-
ly 27 inches away from a 10.5 inch color monitor (EGA) driven by
an 80386 computer. The monitor was set for maximum contrast, and
intensity was set at approximately 102 cd/m2 , measured from a 7.5
inch by 4 inch uniform white field. On a given trial, nine
gauges were presented on the monitor; subtending a horizontal by
vertical visual angle of approximately 16* by 80. Each gauge was
composed of two parallel white lines, with tick-marks falling at
equal intervals on the left line for all conditions except the
luminance cue condition. For this latter condition high reli-
ability gauges were white and the remaining gauges were gray.
The intensity of the white gauges was approximately 102 cd/m2 and
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the intensity of the gray gauges was approximately 22 cd/m2

measured from 7.5 inch by 4 inch uniform white and gray fields,
respectively.

Each tick-mark represented a display increment of 1.0, and
ranged from 0.0 to 10.0. Two longer blue lines, located near the
tick-marks, indicated the positions of the signal and noise
distribution means. The value displayed by each gauge was deter-
mined by sampling a number from either a "signal" or "noise"
distribution, depending on the type of trial. This number was
converted to the vertical displacement of a horizontal white line
from the bottom (e.g. zero position) of the gauge (see figure 9).
The gauge values were drawn from the signal distribution on 50
percent of the trials. The mean of the gauge values on signal
trials, p., was equal to 5.0; the mean on noise trials, g,, was
equal to 4.0. The standard deviation of the gauge values on
signal and noise trials depended on the particular condition.

F I F F I F 1I F1 FI F I F I F I

II II II -I- I! I -iI II Il
t-I i--' i i l I l ti II -t- i l

iI il i-I -il il i li -i II
i I i H i I -i Li l i I i-I

Lt Jt L J LJ L J L• J LJ L J L J

Figure 9. Example of the 9-clement graphical display.
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TABLE 2

Summary of experimental conditions.

rI I
X 4 subjects I I

3 durations I I
(150, 400, 800s ) J UNCUD CUED

I -II I 1
SI Grouped

Left hhhhlllll HHHH111II
IMIXED 1 i
I IGrouped

Right lllllhhhh 11111HHHH

I IDistributed I I
I Even Ilhlhlhlhl I HIHIHIH1

BLOCK 1 1 i
UNEQUAL IDistributed I

I Odd hlhlhlhlhI HIHIHIHlH
RELIABILITY Gop

I ~~Grouped I
CONDITIONS Left hhhhlllll

PURE I
SI Grouped

Right lllllhhhh

I IDistributed I
I Even Ilhlhlhlhl

I BLOCK I
B IDistributed I

I Odd I hlhlhlhlh

EQUAL RELIABILITY CONDITIONS o= I
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The experimental conditions are summarized in table 2.
There were five different element reliability arrangements: (1)
Equal, (2) Grouped-Left-High, (3) Grouped-Right-High, (4) Dis-
tributed-Even-High, and (5) Distributed-Odd-High. In the Equal
condition, the standard deviation of all gauge elements was equal
to 1. In the Grouped-Left-High condition, the standard deviation
of the four left elements was equal to 0.75, and the five right
elements was equal to 1.5. That pattern was reversed in the
Grouped-Right-High condition. In the Distributed-Even-High
condition, the standard deviation of .the four even elements
(element 2, 4, 6, and 8) was equal to 0.75, and the standard
deviation of the remaining elements was equal to 1.5. In the
Distributed-Odd-High condition, the standard deviation of the
five odd elements (element 1, 3, 5, 7, and 9) was equal to 0.85,
and the standard deviation of the remaining elements was equal to
1.3. The standard deviations were selected to maintain predicted
optimal performance, d'iaut, at 3.0.

The unequal reliability conditions were run under two
different trial block conditions: Pure Block and Mixed Block. In
the Pure Block condition, all display and distribution parameters
were fixed within a block of 200 trials. Thus, for the four
arrangements.(Grouped-Left-High, Grouped-Right-High, Distributed-
Even-High, and Distributed-Odd-High), the relationship between
element reliability and spatial position was fixed throughout the
block of trials. In the Mixed Block conditions, the trials
within a block of 200 trials alternated randomly among the
Grouped-Left-High, Grouped-Right-High, Distributed-Even-High, and
Distributed-Odd-High arrangements. Therefore, in the Mixed Block
conditions the reliability of an element at a given spatial
position was random over trials.

All trial block conditions were tested at three levels of
stimulus duration (150, 400, and 800 ms). The duration of the
stimulus presentation was synchronized with the refresh traces of
the monitor. The period between traces was approximately 17 ms.
The onset and offset of the display was delayed until a retrace
was ready to occur. Once the stimulus was presented, the dura-
tion was controlled by counting the number of refresh traces
which corresponded with the selected stimulus duration (150, 400,
or 800 ms).

Procedure

Observers were told to make their decisions based on the
level of the gauges relative to the signal and noise mean mark-
ers. They were told to rank the likelihood that the evidence
represented a signal by using the "4", "3", "2" and "I" keys,
where "4" represented very sure it was a signal and "1" repre-
sented noise. In fact, observers tended only to use the two
middle keys. Thus, responses on keys "I" and "2" were combined
to represent noise, and responses on keys "3" and "4" responses
were combined to represent signal in the data analyses. When the
reliabilities differed across elements, observers were informed
that the least variable gauges were the most reliable.
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The trial sequence proceeded as follows. First, observers
were given a 0.5" by 0.5" fixation cross at 4'he center of the
display for 200 ms. This was replaced by the nine line-graph
gauges for a stimulus duration of either 150, 400, or 800 ms.
Following the stimulus a white blanking mask was presented for
200 ms. Then, the display was completely black for 1 second, at
which time the observers were allowed to respond. Any responses
made prior to or following this period were discarded as "No
Response" trials. Finally, the observers were given feedback at
the center of the display for 250 ms. Within a given session, an
observer ran through 10 blocks of 200 trials. Across sessions
there were 1500 trials (750 signal and 750 noise) collected for
each condition.

Due to time constraints imposed by the need to collect
multiple trials, some of the observers received less practice
than others. Subject S4 was highly practiced. He ran through at
least eight practice sessions for each condition prior to collec-
tion of the experimental trials. Subjects S1, S2, and S3 were
highly practiced on the Yes/No detection task, but they only ran
through one practice session for each of the individual condi-
tions.

Finally, to control for any possible practice effects in the
experimental sessions, each observer received a different order
of four trial block conditions, organized such that across sub-
jects each condition occurred once in each the four possible
positions in the order.

TABLE 3

Average performance (d') of the four observers for each condition.

I I UNCUED CUEDII I I
Arrangement 1 150 1 400 1 800 1150 1 400 800

I jGrouped 11.84512.00312.09911.98612.28812.3711
I MIXED - I i " i t ! i

UNEQUAL I BLOCK IDistributed 11.99612.11912.22911.96612.13112.1811
RELIABILITY iI = "t
CONDITIONS I JGrouped 11.72811.98312.0411

1 PURE I ' i i I
IBLOCK iDistributed 11.84112.02112.0861

EQUAL RELIABILITY CONDITIONS 12.24012.44012.570I
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Results

Table 3 summarizes the average performance (d ob values) of
the four observers for the experimental conditions. The values
of d' 0 5_ for the Distributed-Even and -Odd arrangements and the
Grouped-Left and -Right conditions were averaged, respectively,
in order to create the distributed and grouped condition averages
shown in the table. Thus, for the unequal reliability conditions
shown in table 3, each entry represents the average of eight
d'obs values (the values shown in the equal reliability condi-
tions are the average of four d'obs values).

A repeated-measures analysis of variance was performed on
the d'obs.results for the unequal reliability conditions. Per-
formance improved as stimulus duration increased (f(2,6) =
13.663, R<0.01). In addition, there was a marginal advantage for
the luminance cue condition over the two non-luminance cue condi-
tions (F_(2,6)=3.846, R<0.1). To compare performance in the equal
and unequal reliability conditions, the data in the unequal
reliability conditions were further collapsed across the two
source reliability arrangements and a second analysis of variance
performed. *Again, there was a significant effect of stimulus
duration (f(2,6)=12.503, p:0.01) and of block type (f(3,9)=5.281,
p50.-05). All observers showed better performance in the equal
reliability condition than in the unequal reliability conditions.

To summarize, these results indicated that stimulus dura-
tion, block type, reliability distribution, and cueing, had an
effect on the accuracy of observer detection performance. It is
logical to suspect that these differences in performance are
related to the observers' weighting strategies. Next, we consid-
er the effect of the experimental conditions on the observers'
weighting strategies.

The observers' weights were estimated using Berg's (1989,
1990) Conditional-On-A-Single-Stimulus (COSS) analysis technique,
described in detail in the Appendix. The estimated weights were
based on the slopes of cumulative normal functions that had the
best Chi-Square fit with the observers' COSS functions. Two
weight estimates were calculated for each element in each condi-
tion, one for signal and one for noise trials. Out of the many
COSS functions that we fitted (minimum Chi-square) to cumulative
normal distributions in this analysis, only 6.7% differed signif-
icantly (p<=0.05) from normality. The signal and noise weight
estimates were averaged and these average weights, a,, were then
used to compute measures of weighting efficiency, vt. The
weighting efficiency, q- , provides a measure of how well the
observer's weights matc• the weighting pattern that would be
optimal for the particular element reliabilities in the task.

Table 4 summarizes the average weighting efficiencies for
the observers. As with the d'obs analysis, the efficiency meas-
ures for the Grouped-Left and -Right and Distributed-Even and
-Odd arrangements were averaged together to obtain the grouped
and distributed efficiency values, respectively. In general, the
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"weighting efficiency results correspond to the d'obs results.
Across all conditions, weighting efficiency increased as the
stimulus duration increased.

TABLE 4

Average weighting efficiency estimates for the experimental variables
(arrangement, stimulus duration, block-cueing condition)

i I i I
UNCUED CUED

I I I .1
I Arrangement 1 150J 4001 800 1150 i 400 1 800 1I p I- =I 1 I. I
I I lGrouped IO.58010.62610.66210.79010.86810.8851
I IMIXED f-I 1

UNEQUAL I BLOCK IDistributed 10.65810.69410.73910.68910.77810.8191
I RELIABILITY I I I ' I I

CONDITIONS I IGrouped I0.58910.70310.7071

I IPURE I ! I 1I
I BLOCK IDistributed 10.61510.69410.7171

EQUAL RELIABILITY CONDITIONS 1o.75010.84810.8681
t ,I I I I

To identify the magnitude of statistically significant differenc-
es in ngt, a Monte Carlo simulation was performed. The parame-
ters for the sampling distribution of n were chosen to provide
a match to the weighting efficiency of tMe poorest observer.
This provided the most conservative (i.e., largest) estimate of
the standard deviation of the values of nt observed in the
actual experiment (estimated a m = 0.04). The criterion that we
selected for a significant difference in n , was two standard
deviations (2as m) of the sampling distribution of n . Thus,
differences in q which exceeded 0.08 were identified as signif-
icant. Given this criterion, many of the differences in the
performance accuracy shown in table 3 for different conditions,
can be attributed to differences in the efficiency of the observ-
er's weighting strategy.
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Many of the differences in weighting efficiency shown in
table 4 for the different conditions (block type, unequal and
equal reliability, cued and uncued), can be seen to be consistent
with the differences observed in the performance measures shown
in table 3. For example, weighting efficiency was greatest in
the equal reliability and in the cued, unequal reliability condi-
tions. Both conditions showed an advantage over the other
uncued, unequal reliability conditions. This pattern was main-
tained at all stimulus durations and was fairly consistent across
the four observers.

Figure 10 shows the averaged weights for the two levels of
source reliability and the three unequal reliability block type
conditions, at a stimulus duration of 800 ms. The data are shown
for the 800 ms condition because performance was highest at this
duration and differences among the conditions were fairly con-
sistent across levels of stimulus duration. Each graph repre-
sents the data from an individual observer. The weight esti-
mates, a., for the separate sources were assigned to one of the
two leveLs of reliability, depending on the variability of the
stimulus values associated with that source. The data were
averaged across the different types of element arrangements
(left-right and even-odd); we also partitioned the data by the
separate arrangements and did not find any change in the trerds
shown in the figure). From the figure, one can see that all the
observers assigned higher weights to the high reliability than to
the low reliability sources. Consistent with the analysis of
weighting efficiency summarized in table 4, all observers showed
the largest difference between the high and low reliability
weights in the unequal, mixed block, cued condition.

Conclusions

The primary goal of this study was to determine whether
observers can appropriately direct their attention to differen-
tially informative elements of a visual display. The evidence
from research on human decision making suggests that when infor-
mational sources differ in informativeness, decision makers
generally do not consider these differences in forming their
decisions. Instead, they act as though the sources are equall';
informative, and weight them accordingly (Schum, 1974; Wickens,
1984). Similarly, Berg (1990) found that observers in an audi-
tory discrimination task were better at weighting sources that
were equal rather than unequal in reliability.

In the uncued conditions of the present study, the weights
that the observers' assigned to the high reliability elements
were only slightly higher than the weights they assigned to the
low reliability elements. Thus, observer weighting efficiencies
in the uncued conditions (between 0.5 and 0.74), were generally
lower than they were in the conditions when the element reliabil-
ities were uniform. These results are consistent with earlier
studies that concluded that observers tend toward using uniform
weights when processing displayed information. But there are at
least two exceptions to this rule. The first exception occurs
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Figure 10. Average weights for four observers in the mixed-block-cued, mixed-block-uncued, and pure-block-
uncued conditions as a function of the level of reliability (Low/High) at a duration of 800-ms.
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when the sensory component of the task is difficult, such as when
the stimulus duration is very brief. Under these conditions, the
observer only can attend to a narrow display area around the
fixation point; the result is a high weight for elements in the
central region and a low weight elsewhere (Sorkin et al., 1991).
The second exception to the rule can be seen in the present
study. As the duration of the stimulus was increased, observers
were able to make greater use of the differential reliability of
the display elements. This was most evident when the element
reliability was conveyed via a luminance cue. The weighting
efficiency increased by as much as 50% when the stimulus duration
was long and there was a luminance cue.

When sources have to be prioritized in terms of the underly-
ing statistical properties of the information, observers may be
limited by their ability to estimate stimulus properties such as
the variability of the display elements. They may also be limit-
ed by their ability to then weight the sources appropriately,
according to the estimated variability. The relatively high
weighting efficiencies observed in the cued conditions of the
present experiment, indicate greater observer attention to the
higher reliability elements. Of course, one cannot conclude from
this result that observers have improved sensitivity to the
differences in element variability.

However, the results observed in the uncued conditions
strongly suggest that observers are able to estimate element
reliability from the statistics of the displayed information
alone. Even though the weighting efficiencies in the uncued
conditions were lower than those in the equal reliability condi-
tion, the observers were able to assign higher weights to the
more reliable display elements. The initially surprising result
was a lack of a performance advantage for the pure over the mixed
block conditions. In the pure block condition, the variability
of each display element was assigned to a particular spatial
position and didn't change over trials. In the mixed block
condition, the spatial positions of the high reliability elements
changed randomly over trials. We had thought that the observers
would not be able to identify the high reliability elements in
the mixed block condition, because it would be impossible to
estimate the variability of a given spatial position,.over tri-
als. But the results in the pure block condition suggest that
the observers do not estimate the variability of specific ele-
ments over trials.

If the observers don't use information about the trial-to-
trial variability of different display elements, how do they
obtain information about the differential reliability of ele-
ments? It appears that observers are able to utilize variability
information that is present within a single trial. Consider that
on a given trial the readings of the high reliability elements
will tend to fall at a common vertical position in the display,
causing them to line up as shown in figure 4. Thus, a tighter
pattern of the data displayed by the high reliability elements,
provides potential information which the observer may use to
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identify which sources were more reliable. After the experiment,
we questioned the observers about strategies they used on these
conditions, and some reported that they had used such display
patterns in their decision making. Apparently, observers can
utilize information about the relative variability of different
display elements, from the within-trial pattern of displayed
information.

From this study, we may conclude that observers are able to
obtain information about the reliability of different display
elements, but that they are are relatively inefficient at doing
so. One means by which observers may estimate the reliability of
different display elements is via the variability of subordinate,
display patterns. However, observers show greatly improved
efficiency when the display elements are coded by luminance.
Appropriately designed luminance cues, and possibly other cues,
can greatly help observer's to prioritize the information in a
display, by indicating where attention should be directed.
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Figure 11. Example of a pattern that results from data displayed by High (and Low) reliability elements on a
given trial, for the grouped and distributed arrangement.
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1.3.2 Optimized Codes for visual display processing (Montgomery
and Sorkin).

These experiments studied observers' ability to use multiple
independent visual information sources in forming a decision.
The goal of the study was to identify means of coding the (inde-
pendent) visual elements so as to maximize the efficiency of
decision making. The information provided by a given source is a
quantity that changes in magnitude depending on the underlying
state, signal or noise. As with the previous study, this quanti-
ty was represented as the value of a graphical element in a
visual display. We examined the effects of two specific factors
on an observer's ability to use the information conveyed by the
separate elements. The first factor was whether or not the
arrangement of elements produces an emergent, object-like fea-
ture. The second factor is the relationship between the emergent
feature and the optimal decision statistic for the task. These
experiments were reported in Montgomery and Sorkin, 1993 and in
Montgomery, 1993 (attached).
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Two studies examined the effects of display factors on

observers' ability to use multiple sources in visual signal

detection. The information provided by a given source was

represented as a value on a graphical element. Each dis-

played value was an independent sample from one of two

normal distributions, depending on the type of trial (Signal

or Noise) and the task being performed (Yes/No or Four-

Alternative-Forced-Choice, 4AFC).

The first study examined observers' ability to use

differences in source reliability in performing a Yes/No

decision task. The reliability of the different display

elements was controlled by manipulating the variance of the

distributions from which the element values were sampled

(high reliability = low variance). Observers' efficiency in

weighting the sources based on their reliability was
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estimated. Observers were relatively inefficient at using

reliability information in forming a two-alternative deci-

sion (signal or noise). Only when a luminance cue to

source reliability was introduced at stimulus durations

equal to or greater than 400 ms Was observer performance

equivalent to an equal reliability condition. The evidence

suggests that luminance cues aid observers in prioritizing

visual information sources according to their importance to

the task.

The second study examined the effects of display element

arrangement on observers' performance in both Yes/No and

4AFC visual signal detection tasks. The information was

displayed graphically in one of six formats constructed

from a combination of two factors: 1) whether or not the

display elements were arranged to produce a global feature

that resulted from the interaction of the separate display

elements, an "emergent feature," and 2) whether or not the

magnitude of this global feature was monotonically related

to the optimal decision statistic (for the Yes/No task).

The results indicate that performance was facilitated by an

emergent feature in the Yes/No task and was hindered by the

presence of an emergent feature in the 4AFC task. Due to

the relatively high performance produced by an angular

element code, it was not possible to determine whether

visual signal detection was affected by the presence of a

relationship between an emergent feature and the optimal

decision statistic.
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MATHEMATICAL MODELS

Introduction

Every day, humans are faced with uncertain circumstances

in which they have to form decisions based on multiple

sources of information. In some situations these decisions

have to be made rapidly, possibly to avoid an unfortunate

outcome. For example, air traffic controllers have to

detect and respond to selected events under time stress in

order to avoid potential aircraft collisions. In many

situations, the information is conveyed to the decision

maker via visual displays. As a result, researchers are

interested in determining how efficiently observers can

combine spatially and temporally presented visual informa-

tion sources, and in identifying the factors which influence

overall processing efficiency.

The current investigation examines observers' use of

multiple, spatially presented, independent, visual informa-

tion sources in forming detection decisions. Using the

Theory of Signal Detectability (TSD, Green & Swets, 1966)

paradigm, we can specify the performance of an optimal

observer in different detection tasks. The central theme of

this investigation was to identify whether selected display

coding factors, partly derived from knowledge of the optimal

observer, would assist observers' detection decisions.
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The first study examines observers' ability to combine

nine independent, informational sources to form a Yes/No

detection decision (Signal or Noise). The information is

coded as graphical elements in the visual field, and in some

conditions the sources differed 'in their reliability.

Frequently, decisions are based on multiple sources of

information that differ in their informativeness (or reli-

ability). An optimal observer includes this information in

her detection decision. That is, she weights the informa-

tion according to informativeness. However, when decisions

need to be made rapidly, observers do not always consider

all relevant information. The observer may not consider all

sources or she may not apply an optimal weighing strategy.

Thus, the main concern of this study was to determine

whether selected factors assist observers in directing their

attention to more reliable informational sources.

The second study further examines the effects of

selected display formats on observers' detection decisions.

Observers were given four informational sources to perform

either a Yes/No task, as in the first study, or a Four-

Alternative-Forced-Choice (4AFC) detection task. Bennett

and Flach (1992) summarize the results from a number of

studies which suggest that factors related to the display

element arrangement can differentially affect performance in

these two detection tasks. That is, selected display

arrangements are more likely to facilitate performance in

tasks which require integration of information, as in a
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Yes/No task, than performance in tasks which require focused

attention, as in a 4AFC task. This study attempts to iden-

tify the importance of two factors related to display ele-

ment arrangement which may be contributing to possible

differences in performance between'the two tasks.

In a Yes/No decision task, an observer is given a sample

of n independent elements (x1, x2, ... xn) to decide which

of two alternative events (signal or noise) led to the

evidence observed. On a given trial, one of the two stimu-

lus alternatives is true, and each element conveys inde-

pendent information about the current state. On signal

trials, each xi is drawn from a normal distribution with a

mean of g S and a standard deviation of Oa. on noise trials,

each x. is drawn from a normal distribution with a mean of

gn and a standard deviation of a,. Alternatively, in a 4AFC

task, on each trial four independent elements are presented.

The values of three of the sources are drawn from the noise

distribution and one source value is drawn from the signal

distribution. The observer has to decide which source

represents the "signal" event.

Employing the TSD paradigm, we can use the information

about the underlying distribution parameters to identify how

an optimal observer should perform in each of these tasks

That is, we can identify the optimal performance level of an

observer who is only limited by the uncertainty of the

evidence, and who uses an optimal decision strategy. Given

this information, we can 1) identify how well an observer



4

performs relative to the ideal, and 2) attempt to facilitate

observer performance, which is generally inferior to the

ideal, by presenting the information in a manner which helps

them to act like a mathematically ideal observer.

Defining the Optimal Observer'in Yes/No Detection

The Theory of Signal Detectability (TSD, Green & Swets,

1966; Green, 1992) provides a quantitative model for

describing decisions based on uncertain evidence. Since it

is a normative theory, it prescribes an optimum means of

combining the information to form a statistic upon which an

observer can base her decision. According to TSD, an opti-

mal decision statistic is a likelihood ratio, or some value

that is monotonically related to the likelihood ratio. A

likelihood ratio is the ratio of the conditional probabili-

ties for the current trial evidence, x. That is,

L(x) = f(xls) / f(xln). (1)

It is assumed that the underlying distributions are normal

such that the conditional probabilities can be expressed as

f(xln) = [1/(27rar) ]EXP[-k((x - gn)/a)2 ] and

f(xis) = (1/(27raz)']EXP[-h((x - gs)/as) 1, (2)

where as = a a,, and to simplify the derivations n < gs.

For n independent sources of information, x1, x2, ... , xn

by definition the probability of their joint occurrence is

the product of their separate probabilities, p(x 1 *x 2) =

p(x 1 )p(x 2). Similarly, the likelihood ratio for multiple

independent sources can be expressed as the product of the

separate likelihood ratios, L(x 1 *x 2) = L(xl)*L(x 2 ).

i -
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Since the natural logarithm of the likelihood ratio is

monotonic with the likelihood ratio, the lnL(X) is also an

optimal decision statistic. Thus, we have the following

equation:

Z = lnL(x,,x2 ,... x) = inL(x1 ) + InL(x 2)+...+lnL(x,). (3)

When the definitions of the conditional probabilities for

the likelihood ratios are included in equation 3 and this

equation is reduced, it turns out that the optimal decision

statistic is a weighted sum of the evidence (see appendix A

for the derivation),

n

Z = Zxi((MUi . )- And((ae!I ? A )/Ue ). (4)
1

where x. is the ith source, drawn from either a signal

distribution, Normal([SiI,oi], or the noise distribution,

Normal[ILi,aei]. Given a large sample, Z is also normally

distributed since it is the sum of n mutually independent

random variables, and its Mean and variance given the two

alternatives are

n n
E(ZIs) = Eh((,,si-n..I/a-)), E(ZIn) = -I½ (((Isii-.ni)ln/e) (5)

1 1

n
VAR(Z) = E( (Asi-AnI)/a) 2 . (6)

The assumption is that on a given trial an ideal observer

will compare Z to some decision criterion, D. If Z is

greater than or equal to D, then the observer should respond

"signal." Otherwise she will say "noise."
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When the separate nieces of evidence are not equally

reliable, an ideal observer is sensitive to these differ-

ences and weighs the informational sources accordingly. The

informativeness, and thus the appropriate weight, for a

given source can be represented by the d' statistic as

follows:

dIi=(Asi- Anj) / 0ei (7)

Expected optimal performance in a detection task is limited

by the informativeness of the underlying evidence. That is,

an observer's performance given a single source will not

exceed d'.. Based on equation 7, the informativeness of a

particular source can be manipulated by either changing the

distance between the two distribution means, Asi- -.i

6Aj, or the size of the standard deviation, aei.

In the first study, &j. is held constant (6A, = 6A 2

SA,,) , and the informativeness of the separate sources is

controlled by changing aei. Smaller values of aei produce

larger d'. values and thus represent more informative

sources. Table 1 lists the distribution parameters corre-

sponding with a condition in which the even sources, xi,

have lower variability, making them relatively more informa-

tive.

The optimal weight for a given source, a1 , is related to

the d' value. When Asi is held constant, ai is proportional

to the reciprocal of the variance for that source,

n
= 1/ [e ?I(l/)]- (8)

a e



Table 1.
The mean and standard deviation of five informational
sources in which the sources alternate in reliability; the
even elements have the highest reliability.

element 1 2 3 4 5

sicrnal
AS 1 1 1 1 1

1.5 0.75 1.5 0.75 1.5

noise
An 0 0 0 0 0

a 1.5 0.75 1.5 0.75 1.5n

d' 0.67 1.33 0.67 !.33 0.67



8

When an observer's decision is based on ir.-tiple sources,

optimal performance is expressed in terms of the following

d' statistic:

n n n
d' (6ElOeo) / (S(6,l/ae)) = [Id'• ]½ (9)

Ii I e2(9

Equation 9 can, then, be rewritten to include the optimal

weights as follows:
n n

d' = z] / [(Z6aA) Z]i (10)ideai [ (10),

If the weights are normalized and the optimal weighting

pattern requires equal weight across elements, then equation

10 equals the product of the square-root of n and d'1i.

The preceding equations allow us to define the perform-

ance of an ideal observer who is only limited by the uncer-

tainty of the evidence. This provides a standard by which

we can compare an observer's performance which is fre-

quently inferior to the ideal. For a multiple observation

task, some of the loss in performance may be a product of

observers using a nonoptimal weighting strategy. Other loss

may be more generalized (e.g., some form of internal noise),

showing up as an overall performance loss. To discriminate

the effects of these two sources of error, we need to iden-

tify how the observer weights the separate sources. A

technique designed by Berg (1989, 1990) provides a means for

estimating the observer's relative weights.

Generally speaking, the observers' weights are related

to the slopes of empirical cumulative normal distributions
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which Berg refers to as Conditional-On-A-Single-Stimulus, or

COSS functions. A COSS function is a plot of the proportion

of times an observer responded "signal" as a function of the

magnitude of a given element across experimental trials.

Two COSS functions are calculated for each element, one for

signal trials and one for noise trials.

Figure 1 shows the COSS functions derived from simulated

data of an observer using three informational sources to

perform a Yes/No detection decision. The COSS functions on

the left represent an observer using an equal weighting

strategy. The COSS functions on the right represent an

observer who weights the first source most and the third

source the least. The upper curves with the square symbols

in each graph of figure 1 represent the COSS functions for

the signal trials. The lower curves with the circles in

each graph represent the COSS functions for the noise

trials. Figure 2 depicts the weights of the three sources

derived from the COSS functions shown in Figure 1. The

small squares and the circles represent the weight estimates

for the signal and noise trials, respectively. The lines

connecting the points represent the average of the two

weight estimates. The solid and dashed lines represent the

equal and unequal weighting strategies, respectively. By

comparing figures 1 and 2, it can be seen that when the COSS

functions have. similar slopes the weights are relatively

equal. Alternatively, looking at the graphs on the right

side of figure 1, we can see that the smaller weights

£ .
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correspond .ith the shallower slopes in the COSS functions.

The actual weights depicted in Figure 2 are based on the

variance of a cumulative normal distribution which had the

best Chi-square fit, VAR[Yi], to the observer's COSS func-

tions, represented by the solid lines in figure 1. (A

detailed description of Berg's (1989) theoretical solution

for the relative weights is found in appendix B). This

estimated variance is added to the variance of the distribu-

tion from which the items were sampled, a!l. Then, to

derive the relative weights, the sum of the variances for

each source is divided by the sum of the variances corre-

sponding with one source set to unity,

n
VAR[Y.] + ae rao, / a? az

+ el I el j k

=____ =____ -- (11)
n

+Ary a 2  2aaaVAR[Y + aet et / a: a2 .

Finally, the weights are normalized such that Zai = 1.

Note that the choice of which source is to be set to

unity is arbitrary. That is, the investigator should decide

which item is the-best choice given the hypothesis that is

being addressed. For instance, Berg and Green (1990) used

the COSS technique in an auditory profile analysis task. A

profile task involves detecting an increment in the level of

a single component (tone) among a multi-component back-

ground. Given. an optimal decision strategy that compares

the mean level of the signal component to the mean level of

the nonsignal components, the greater the difference from

I -
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zero the more likely an increment was added. If the weight

assigned to the signal component is set to unity, then the

optimal weighting for the nonsignal components should equal

-l/(n-l) (where there are n components). For this experi-

ment the element found in the center of the visual field at

the fixation point, x5 , was set to unity.

Given the observers' estimated weights, Berg (1990)

shows how these weights can be incorporated into a measure

of the observers' weighting performance. This measure is

the same as equation 10, except the observer's weights, ai,

are used instead of the ideal weights, ai,

n n
dl= (6fi Ea)] / (Za2o a)] (12)

1 1

If the observer applies a nonoptimal weighting pattern the

observer's weighting performance, d' will be lower than

that of an ideal observer, d'idat.

Furthermore, we can obtain a measure of the observer's

overall performance, d'b, on the task by calculating the

absolute value of the difference between the Z-scores corre-

sponding with her-hit and false alarm probabilities on the

experimental trials. If this measure, d'l, is lower than

d'. then the additional loss in performance can be

thought of as the effects of the observer's internal noise,

aint. That is, unlike an ideal decision maker, an observer

will often be less reliable at transferring information from

the environment into a decision statistic. It is assumed

that internal noise is independent of the weight estimates.
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Finally, once the three peiz frmance measures, d'IaL
It' and dI , have been derived, performance can be

summarized in terms of an efficiency measure (Tanner &

Birdsall, 1958). Berg (1990) describes observers' per-

formance in terms of three efficiency measures: one repre-

senting the observers overall performance, another repre-

senting the observers' weighting performance, and a third

representing residual factors such as internal noise. A

general measure of the observer's overall efficiency, nb,

is the squared ratio of her performance, d' , relative to

the performance of an ideal observer, d' ideal That is,

rb= (d',/ d'i d.t) . (13)

If the observer is optimal, nb = 1.0. Any decrement in the

observer's performance will correspond with a decrease in

efficiency, where 0 < n < 1.

The other two efficiency measures, qt and ?7 ise' allow

us to separate the loss in observer efficiency due to non-

optimal weighting from loss due to observer internal noise,

respectively. The weighting efficiency, like the overall

efficiency, t,, is the measure of the observer's weighting

performance, d',, relative to the ideal observer, d' i 81,

who uses an optimal weighting strategy:

t7wgt = (d' Wgt / d'idea()Z " (14)

oise accounts for any additional loss in d' 0o not explained

by the weights,

7noise-= (d'obs/ d' )2 (15)

I -
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The relationship among these measures is

obs = 17wgt * 1 ise" (16)

Defining the Optimal Observer in 4AFC Detection

In a Four-Alternative-Forced-Choice (4AFC) task, an

observer is given four independent sources of information,

where each source represents one of two alternatives,

"signal" or "noise." On a given trial, one of the four

elements is randomly selected to represent the signal event.

This source value is drawn from a normal distribution with a

mean of As and a standard deviation of as. The remaining

three source values are drawn from a normal distribution

with a mean of Anand a standard deviation of an, where un<

A and an = a ae. The observer's task is to identify

which of the four sources represents the signal. Rather

than combining the information to make a single response, as

with the Yes/No task, a 4AFC task requires the observer to

independently assess each value to identify which source

represents the signal.

In the second study, there are four informational

sources, represented by graphical elements located in four

separate spatial position in the visual field. For the 4AFC

task there are four possible stimulus sequences, <s,n,n,n>,

<n,s,n,n>, <n,n,s,n>, or <n,n,n,s>, where <s,n,n,n> repre-

sents a stimulus value in the first spatial position and

three noise values in the second, third, and fourth spatial

positions. The observer has to determine which of the four

spatial orders in present on a given trial. Thus, there are

j -
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four possible responses, <S,NN,N>, <N,S,N,N>, <N,N,S,N>, or

<N,N,N,S>, corresponding with the four equally likely loca-

tions where the signal can occur.

Table 2 depicts the stimulus-response matrix for the

decision task. The matrix cells falling along the minor

diagonal represent correct responses. Ti represents the

total correct responses for the ith ordering of the stimuli,

Sg1 . The percentage correct in a 4AFC task, P4 (C), is

n
P4 (C) = ET1 / NTotaL, (17)

1

where NTotaL is the total number of trials across all stimu-

lus orders.

Green (1992) shows that an ideal observer, who attempts

to maximize percent correct, will choose the source with the

largest value since this value also has the largest likeli-

hood ratio. To expedite the derivation, Green characterizes

the task as detection of 1-of-m possible signals relative to

noise alone. Using this approach, each sequence would be

represented as a separate signal, e.g., <s,n,n,n> = Sg1.

Thus, the likelihood that the evidence, x = <x ,X2,X3,X4>,

presented on a given trial represents the ith signal com-

pared to noise alone may be expressed as follows:

l(xjSgj) = EXP(x,((,4s,-gn)/ae 2 ) - ½((I2-_g)/ /)], (18)

where li < As. and a = as = Ce xi is monotonically

related to the optimal decision statistic, l(xlSg1 ). Thus,

the observer should choose the largest value, x,, since this

value also has the largest likelihood ratio. Green's (1992)
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Table 2.
The stimulus-Response matrix for'the 4AFC task. The
sequence <s,n,n,n> represents a stimulus value in the first
spatial position and three noise values in the second,
third, and fourth spatial postitions.

Sgl Sg2 Sg3 Sg4

<s,n,nn> <n,s,n,n> <n,n,s,n> <n,n,n,s>

<S,N,N,N> T1

<N,S,NN> T2

<N,N,S,N> T3

<N,N,N,S> T4
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derivations of the optimal decision statistic for an Four-

Alternative-Forced-Choice task are found in appendix C. An

alternative calculation of the optimal decision statistic

that considers the sequences as four separate hypotheses

yields a slightly different decision statistic, but the same

decision strategy. That is, an optimal observer should

choose the source with the largest value since it also has

the largest likelihood ratio.

The accuracy of an observer using this predicted optimal

decision strategy depends upon the probability that the

largest value was actually sampled from the signal distribu-

tion. That is, P (C) depends on the probability that the

sample from the signal distribution, f(xjs), is greater than

the samples from the noise distribution, f(xjn) . Consider-

ing two alternatives, the probability that one random varia-

ble is larger than another can be expressed as follows:

P2 (C) N f(uls) [f(vln) dvdu. (19)
I -co J-coW

Equation 19 represents the probability that the value of the

noise sample, v, is less than the value of the signal sam-

ple, u, summed across all possible values of u (Green,

1992). Since the same probability density functions, f(xls)

and f(xIn), are used to define the hit and false alarm

probabilities found in a Yes/No ROC curve, it is possible to

relate performance in an m-Alternative-Forced-Choice task to

performance in a Yes/No task. That is, equation 19 can be

rewritten to produce the following equation,
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P 2 (C) = [1-P. (SIn) ]dPu(SIs), (20)Jo

where l-PU(SIn) is the complement of the false alarm proba-

bility, and -dPu(SIs) is the derivative of the complement of

the hit probability. (See Appendix D for the derivations.)

Equation 20 shows the area under a Yes/No ROC curve is

related to percent correct in a 2AFC task (Green, 1992;

Green & Swets, 1966). Finally, equation 20 can be rewritten

to account for multiple alternatives as follows,

Pm(C) = [[I-PU (SIn) ]m-' dPu(SIs), (21)

Jo

where m > 2.

Thus, it is possible to convert a percent correct value

in an m-Alternative-Forced-Choice task to a Yes/No d' meas-

ure. Hacker and Radcliff (1979) published tables which

allow us to make conversions from percent correct in an m-

Alternative-Forced-Choice task to a Yes/No d'. This table

takes into account the uncertainty associated with larger

numbers of alternatives. For instance, when P2 (C) = 0.8 in

a 2AFC task d' = -1.19; however, in a 4AFC task the same

percent correct, P,(C) = 0.8, yields a d' = 1.89. Finally,

given the relationship between performance in Yes/No and

mAFC tasks, maximum percent correct in a 4AFC task will also

be limited by the underlying distribution parameters (Mac-

Millian & Creelman, 1991). That is, when percent correct in

a 4AFC task is converted to a Yes/No d', performance will

not exceed d' as defined in equation 7.
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The preceding definitions of the optimi.l observer in

both a Yes/No and 4AFC detection decision, provide a base-

line for comparing observer performance under different

experimental conditions. In situations where observer

performance falls short of the ideal, performance may be

facilitated by presenting the information in some manner

which helps them to act more like an ideal observer. The

two studies, to be described, address this approach to

optimizing human performance. That is, these studies look

at the effects of selected display coding factors which were

designed to help observers function as optimal observers on

their detection decisions.



EXPERIMENT 1

Introduction

Visual displays are commonly used to convey system

information, such as air traffic flow or the status of a

production line, to a human decision maker. A complex

visual display may include several subordinate displays or

display "elements." Each display element provides a poten-

tial source of information for the human operator. However,

it may be impossible for the operator to obtain useful

information from more than a few of the display elements at

one time. This problem may be minimized if the operator can

prioritize the display elements in terms of their

criticality and informativeness, and if the operator can

allocate his or her attention accordingly. This study

examined several factors that affect an operator's ability

to allocate attention to display elements that are differen-

tially informative.

In a previous experiment (Sorkin, Mabry, Weldon, &

Elvers, 1991), observers examined a multi-element display

and then reported whether the display represented the occur-

rence of a signal or nonsignal event. Using a technique

derived from the Theory of Signal Detectability (TSD, Green

& Swets, 1964), Sorkin et al. estimated the importance or

weight the observer assigned to each element of the display

21
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in making a detection decision (Berg, 1989, 1990). An

optimal decision-theoretic observer weights the input from

each element according to the element's informativeness or

reliability; highly reliable display elements are weighted

more highly in the detection decision than less reliable

elements (Durlach, Braida, & Ito, 1986; Berg, 1990; Berg &

Green, 1990).

In the Sorkin et al. (1991) study all display elements

were equally informative; hence, each element should have

been weighed equally in the observers' decisions. When the

observation durations were long, the weights were equal

across the spatial array of display elements. However, when

the o-bservation durations were brief and the display coding

was complex, the highest decision weights were associated

with display elements in the center of the visual field,

around the observer's fixation point. The extent to which

the weighting functions were peaked corresponded with the

performance level (low performance was associated with

peaked functions). Sorkin et al. (1991) concluded from

these results, that under difficult conditions, the observ-

er's allocation of attention was restricted to the central

portion of the display.

This interaction between the difficulty of the task and

the availability of information from different regions of

the display is not surprising. A number of variables are

known to affect an observer's ability to obtain information

from the elements of a complex visual display. These

I -
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include the number (Perrott et al.; 1991) and spacing (Andre

& Wickens, 1988) of irrelevant, or distracter, items found

in the visual field, the type of display code (Boles &

Wickens, 1987; Legge, Gu, & Luebker, 1989; Sanderson, Flach,

Buttigieg, & Casey, 1989; Sorkin et. al., 1991), display

item intensity (Eriksen & Rohrbaugh, 1970), and task com-

plexity (Williams, 1982).

When the stimulus durations in the Sorkin et al. (1991)

experiment were long (more than 500 ms), all display element

weights were equal, indicating that the observers could

process information from all regions of the display. Since

the reliability of all the elements was also equal, an equal

weight strategy was optimal for that task. An important

question is whether an observer can employ optimum weights

when the reliabilities of the elements are not equal across

the visual array. Obviously, the ability to match decision

weights to the element reliability is necessary if the

observer is to prioritize the display elements according to

their importance to the task.

When an informational source does not provide a consist-

ent report of an unchanging event, the source is not reli-

able. For instance, if a sensor measures a specific lumi-

nance value to be x at one time and x ± n on a subsequent

reading, the sensor is showing variability in its measure-

ment. Thus, this sensor would be less reliable than one

which produces a consistent measure across time. A person

forming a decision based on this information should place
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greater weight on the more reliable source. However, evi-

dence suggests that people tend to overrate the importance

of unreliable sources (Schum, 1975). Wickens (1984) states

that when people are confronted with sources which are not

equally informative, they perform the task "as if" =il

sources were equally reliable.

The present study addressed whether observers can use

differences in display element variability to identify

source reliability and use this information in forming a

simple Yes/No detection decision. In addition, this study

was designed to determine whether using this information

imposes a significant amount of additional processing

"overhead" on the observer, and whether selected display

factors could reduce related performance loss. As in Sorkin

et al. (1991), the observers in the current study performed

a multi-channel visual detection task. On each trial of the

experiment, observers were presented with a display consist-

ing of nine display elements. The display elements were

nine vertical line-graph gauges arranged in a horizontal

array (see figure 3). The values displayed on the line-

graph gauges, <x1 , x 2,..., xg>, were determined by inde-

pendent, normally distributed, random variables. On a

signal trial, the values of the nine elements were selected

from a distribution with a mean of gs and a standard devia-

tion of a S. On a noise trial, the values were drawn from a

distribution with a mean of Anand a standard deviation of

(7, where g, < gS. The observer's task was to decide
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Figure 3. Demonstration of the nine graphical elements found
in experiment 1.
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whether the data displayed had been generated from the

signal or noise distribution.

The reliability of different display elements was con-

trolled by manipulating the variance of the distributions

from which the element values were sampled: high reliability

elements were sampled from distributions with lower variance

than low reliability elements. That is, a source high in

reliability would be analogous to an instrument which shows

consistent measurements across time whereas a source low in

reliability would not provide consistent measurements. The

variance of a display element at a particular position was

the same for signal and noise trials, but differed across

elements depending on the experimental condition. Table 1

illustrates the mean and standard deviations that could be

employed for a five element display in which odd and even

elements alternated in their level of reliability.

Berg (1990) found that the reliability of elements in an

auditory task similar to the one used in this study could be

used by observers when the most reliable tones were much

louder than the less reliable tones. The loudness cue was

much less effective when reversed, in which case a louder

cue indicated a lower reliability. Berg's results suggest

that under some conditions cuing element reliability (e.g.,

with intensity or color) may aid observers in accurately

weighting display sources by their importance.

Cues such as size, intensity, color, and movement are

often incorporated in display design to draw attention to
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specific items in a display. For instance, researchers have

found that correct utilization of color coding (Christ,

1990; Fisher & Tan, 1989) can reduce search time in locating

an item in a display. Furthermore, Wickens and Andre (1990)

showed that color coding a particular item in an object

display leads to improved accuracy in recalling the specific

value associated with that item relative to a monochromatic

display. Thus, given Berg's results and the evidence cited

above, we predicted that observer weighting efficiency in

the present experiment should be higher for a condition in

which a luminance cue signals the element reliability.

In order to test the efficacy of a cue for element

reliability in the present experiment, the spatial position

of the high reliability display elements was randomly varied

over trials. The overall luminance of the display element

varied in accordance with the reliability (high or low) of

the element. We expected that luminance would provide a

natural code for allocating observer attention and hence

weight, to the high reliability elements. If that were the

case, the efficiency of the observers' weighting strategy

would be much higher in a cued than in an uncued condition.

The duration of the stimulus and the spatial arrangement

of the element reliabilities also should influence how

efficiently the observers match their weights to the element

reliabilities. The results from the Sorkin et al. (1991)

study suggested that 233-ms was sufficient time for observ-

ers to utilize information from as many as nine, equally
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reliable, graphically coded display elements. However, it is

possible that sensing the element reliabilities and differ-

entially weighting the elements, may require some additional

processing steps or "overhead" by an observer. A duration

of 233-ms may be at the margin of an observer's ability to

extract the information needed to discriminate and employ

differences in element reliability. For example, a slower,

serial search may be required to extract the reliability

information and weight the elements accordingly. In that

case, it might be advantageous, when processing short dura-

tion stimuli, to ignore reliability and differential weight-

ing information. Our experiments tested three levels of

stimulus duration (150, 400 and 800-ms). We expected that

weighting efficiency would be greatest at long stimulus

durations (400-ms and 800-ms) and very poor at the shortest

duration (150-ms).

Observer sensitivity to element reliability also may be

affected by the spatial arrangement of element reliability.

If attention is distributed more effectively among spatially

contiguous than separated items, grouping sources similar in

reliability should aid performance. Posner, Snyder, and

Davidson (1980) found that simple reaction time to detect a

light at a second most likely position was facilitated only

when this item was adjacent to a cued location (the most

likely target location). When the second most likely posi-

tion was separated by more than one location, detection

speed was not facilitated. Thus, the weighting efficiency
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should be better for displays with elements grouped by

similar reliabilities than for displays that distribute

element reliabilities across the array.

Finally, we were interested in whether observers would

be sensitive to the reliability" of individual elements

without any cues to element reliability. That is, can

observers estimate (and employ) information about element

reliability based only on the trial-by-trial variability of

the readings from individual display elements and feedback

about the S/N events? To answer that question, we added

conditions in which the relationship between element spatial

position and reliability was fixed, rather than random,

over a block of 200 trials. If the observer can estimate

the variance of the element readings from the first k trials

of a block, the observer may be able to partition the ele-

ments into those with high and low reliabilities. If that

process led to the assignment of higher weights to the more

reliable elements, the observer's weighting efficiency would

be enhanced in that condition.

Method
Subjects

Four University of Florida students with normal, or

corrected to normal, visual acuity participated in this

study. One subject, S2, was later discovered to be color

deficient, and another, S4, was highly trained on the task.

They were paid an hourly wage plus a bonus based on perform-

ance.
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Apparatus and Stimuli

Observers were seated in a sound isolated booth approxi-

mately 27 inches away from a 10.5 inch color monitor (EGA)

driven by an 80386 computer. The monitor was set for maxi-

mum contrast, and intensity was set at approximately 102

cd/mr, measured from a 7.5 inch by 4 inch uniform white

field. On a given trial, nine gauges were presented on the

monitor; subtending a horizontal by vertical visual angle of

approximately 16" by 8. Each gauge was composed of two

parallel white lines, with tick-marks falling at equal

intervals on the left line for all conditions except the

luminance cue condition. For this latter condition high

reliability gauges were white and the remaining gauges were

gray. The intensity of the white gauges was approximately

102 cd/m2 and the intensity of the gray gauges was approxi-

mately 22 cd/m2 measured from 7.5 inch by 4 inch uniform

white and gray fields, respectively.

Each tick-mark represented a display increment of 1.0,

and ranged from 0.0 to 10.0. Two longer blue lines, located

near the tick-marks, indicated the positions of the signal

and noise distribution means. The value displayed by each

gauge was determined by sampling a number from either a

"signal" or "noise" distribution, depending on the type of

trial. This number was converted to the vertical displace-

ment of a horizontal white line from the bottom (e.g. zero

position) of the gauge (see figure 3). The gauge values

were drawn from the signal distribution on 50 percent of the
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trials. The mean of the gauge values on signal trials, •,

was equal to 5.0; the mean on noise trials, gn, was equal to

4.0.

The standard deviation of the gauge values on signal and

noise trials depended on the particular experimental condi-

tion. There were five different element reliability condi-

tions: (1) Equal, (2) Grouped-Left-High, (3) Grouped-Right-

High, (4) Distributed-Even-High, and (5) Distributed-Odd-

High. In the Equal condition, the standard deviation of all

gauge elements was equal to 1. In the Grouped-Left-High

condition, the standard deviation of the four left elements

was equal to 0.75, and the five right elements was equal to

1.5. That pattern was reversed in the Grouped-Right-High

condition. In the Distributed-Even-High condition, the

standard deviation of the four even elements (element 2, 4,

6, and 8) was equal to 0.75, and the standard deviation of

the remaining elements was equal to 1.5. In the Distribut-

ed-Odd-High condition, the standard deviation of the five

odd elements (element 1, 3, 5, 7, and 9) was equal to 0.85,

and the standard deviation of the remaining elements was

equal to 1.3.

The unequal reliability conditions were run under two

different trial block conditions: Pure Block and Mixed

Block. In the Pure Block condition, all display and distri-

bution parameters were fixed within a block of 200 trials.

Thus, in four conditions (Grouped-Left-High, Grouped-Right-

High, Distributed-Even-High, and Distributed-odd-High), the
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"relationship hetween element reliability and spatial posi-

tion was fixed throughout the block of trials. In the Mixed

Block conditions, the trials within a block of 200 trials

alternated randomly among the Grouped-Left-High, Grouped-

Right-High, Distributed-Even-High, and Distributed-Odd-High

conditions. In the Mixed Block conditions, it would be

impossible for an observer to identify the reliability of

any given spatial element, unless the observers were provid-

ed with an additional trial-by-trial cue to element reli-

ability. Finally, all trial block conditions were tested at

three levels of stimulus duration (150, 400, and 800 ms).

The duration of the stimulus presentation was synchro-

nized with the refresh traces of the monitor. The period

between traces was approximately 17 ms. The onset and

offset of the display was delayed until a retrace was ready

to occur. Once the stimulus was presented the duration was

controlled by counting the number of refresh traces which

corresponded with the selected stimulus duration (150, 400,

or 800 ms).

The experimental conditions are shown in table 3. The

mnemonics in each table cell describe the trial-block condi-

tions. The three trial-block conditions which contained

elements which differed in reliability across spatial posi-

tions are denoted by the letter U in the mnemonic, meaning

the sources were unequal in reliability. The equal reli-

ability condition is denoted by the letter E in the mnemon-

ic. As demonstrated in the table all trial-block conditions

! .-
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Table 3.
The mnemonics for experimental conditions found in

experiment 1.

UNCUED CUED

150 1 400 800 150 400 800

LEFT

RIGHT
MIXED BLOCK UNcM UCM

ODD

EVEN

LEFT

RIGHT
PURE BLOCK UNcP

ODD

EVEN

EQUAL RELIABILITY ENcP
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were run at the three levels of stimulus duration. In

addition, within each of the unequal reliability trial-block

conditions the four element reliability arrangements were

presented.

The next two letters in -the mnemonics represent whether

or not a luminance cue was present (C = cue and Nc = No

cue). Finally, the last letter, P or M, denotes the manner

in which the element reliability arrangements were present-

ed. The P represents a pure block design in which the

arrangements remained constant across experimental trials in

a given block, and the M represents a mixed block design in

which the arrangements varied across trials. Thus, the

mnemonic UNcM stands for an Unequal reliability No cue Mixed

block design.

Procedure

Observers were told to make their decisions based on the

level of the gauges relative to the signal and noise mean

markers. They were told to rank the likelihood that the

evidence represented a signal by using the "4", "3", "2" and

"I" keys, where "4" represented very sure it was a signal

and "I" represented noise. In fact, observers tended only

to use the two middle keys. Thus, responses on keys "1" and

"2" were combined to represent noise, and responses on keys

"3" and "4" responses were combined to represent signal in

the data analyses. On conditions where the reliabilities

differed across elements, observers were informed that the

least variable gauges were the most reliable.
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The trial sequence, shown in figure 4, proceeded as

follows. First, observers were given a 0.5" by 0.5" fixa-

tion cross at the center of the display for 200 ms. This

was replaced by the nine line-graph gauges for a stimulus

duration of either 150, 400, or 800 ms. Following the

stimulus a white blanking mask was presented for 200 ms.

Then, the display was completely black for 1 second, at

which time the observers were allowed to respond. Any

responses made prior to or following this period were dis-

carded as "No Response" trials. Finally, the observers were

given feedback at the center of the display for 250 ms.

Within a given session, an observer ran through 10 blocks of

200 trials. Across sessions there were 1500 trials (750

signal and 750 noise) collected for each condition.

Due to time constraints imposed by the need to collect

multiple trials, some of the observers received less prac-

tice than others. Subject S4 was highly practiced. He ran

through at least eight practice sessions for each condition

prior to collection of the experimental trials. Subjects

Sl, S2, and S3 were highly practiced on the Yes/No detection

task, but they only ran through one practice session for

each of the individual conditions.

To control for any possible practice effects in the

experimental sessions, each observer received a different

order of four trial block conditions, organized such that

across subjects each condition occurred once in each the

four possible positions in the order.



36

Fixation:

200 ms

Stimulus HI HH
Duration:
150,400 or 800 ms H H
Mask:

White Field
200 ms

Response
Duration: Black Field
1000 ms

Feedback:
Correct

250 ms

Figure 4. Trial sequence for the first experiment.

I -
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Results

Average observer performance measures (d'ls) for the

experimental conditions are shown in table 4. In order to

consider differences between the equal and unequal reliabil-

ity block-type conditions the data were collapsed across

source reliability arrangements for the unequal reliability

conditions. An analysis of variance performed on the aver-

age d' showed a significant main effect of stimulus

duration (F(2,6)=12.49, R : 0.01). Performance improved as

stimulus duration increased. There was also a main effect

of block-type condition (F(3,9)=5.285, R 5 0.05). All four

observers showed greater performance in the equal reliabili-

ty condition relative to the two unequal reliability condi-

tions which did not include a luminance cue to the more

reliable sources (UNcM and UNcP).

An analysis performed on the observers d' __ mez 3ures for

the unequal reliability conditions indicated significant

effects for all of the experimental variables (block-type

condition, stimulus duration, and arrangement), and their

interactions, except for the three-way interaction. Howev-

er, only a few of these differences were evident in the data

of the individual subjects. All observers showed a perform-

ance improvement as stimulus duration increased

(F(3,6)=13.66, p0.01). There was also a performance advan-

tage for the cued block-type condition, UCM, relative to the

UNcM and UNcP conditions (F(3,9)=3.86, p50.05).

I -
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Table 4.
Average observer performance (d') for each experimental

condition.

UNCUED CUED

150 400 800 150 400 800

LEFT 1.92 2.11 2.12 2.07 2.37 2.40

RIGHT 1.77 1.89 2.08 1.90 2.21 2.34
MIXED BLOCK

ODD 2.06 2.22 2.28 1.92 2.06 2.14

EVEN 1.93 2.02 2.18 2.01 2.20 2.23

LEFT 1.77 2.05 2.14

RIGHT 1.68 1.92 2.04
PURE BLOCK

ODD 1.94 2.07 2.06

EVEN 11.74 1.98 2.03

EQUAL RELIABILITY 12.24 2.44 2.57

x 4 OBSERVERS
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Finally, there was consistency among the observers for

two of the interactions, as well. For the four arrangements

there was a tendency for observer performance to be highest

when the most reliable sources were grouped in the four left

spatial positions at stimulus durations of 400 ms or

greater. Alternatively, at the shortest stimulus duration

performance was highest when the most reliable sources were

distributed among the odd spatial positions. The effects of

arrangement also depended on the particular condition. In

general, observers showed a performance advantage for the

Odd arrangement over the other three arrangements in the

two, no luminance cue conditions (UNcM and UNcP). Alterna-

tively, the grouped left arrangement yielded the greatest

observer performance in the mixed block, cued condition

(UCM). Moreover, the right arrangement tended to show the

poorest performance in the UNcM and UNcP conditions, but

relatively high performance in the UCM condition. All of

these differences were found to be significant through

subsequent paired comparisons using a Tukey test.

Thus, the evidence from these analyses indicated that

stimulus duration and block-type condition had a consistent

effect on observer's performance. In addition, the arrange-

ment of source reliabilities influenced observers' perform-

ance. However, the direction of effects depended on the

stimulus duration and the block-type condition. Performance

was greatest when the stimulus duration was at least 400 ms

and sources were equal in reliability. Considering the

I.
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unequal reliability patterns alone, performance was bes't

when sources high in reliability were cued and grouped.

However, performance was also relatively high for the odd

arrangement in the UNcM condition. Since the location of

reliable elements in the visual field affected performance

differently under specific conditions, it is logical to

suspect that the differences in performance are related to

observers' weighting strategies. For example, when observ-

ers are under time constraints or there is uncertainty about

the location of reliable sources, observers may be less

efficient at applying weights appropriate to the weighting

strategy selected.

Weight Analysis

Observers' weights were estimated using Berg's (1989,

1990) Conditional-On-A-Single-Stimulus (COSS) analysis

technique, described earlier. The estimated weights were

based on the slopes of cumulative normal functions that had

the best Chi-Square fit with the corresponding COSS func-

tions. Two weight estimates were calculated for each ele-

ment in each condition, one for signal and one for noise

trials. In this analysis, out of 2808 COSS functions Chi-

square fitted to cumulative normals, 6.7% significantly

differed (p <= 0.05) from the observers' COSS functions.

The weights reported are the average of the signal and noise

weight estimates.

Table 5 lists the mean weighting efficiencies derived

from the weight estimates of the conditions found in the

I -
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Table 5.

Observer Weighting Efficiency Estimates for Stimulus
Duration and Condition.

Stimulus Duration

Subject Condition 150 400 800 Average

SI: ENcP 0.650 0.780 0.850 0.760
UNcM 0.540 0.645 0.683 0.622
UNcP 0.675 0.755 0.797 0.743
UCM 0.735 0.835 0.850 0.807

S2: ENcP 0.720 0.820 0.790 0.777
UNcM 0.485 0.563 0.633 0.560
UNcP 0.510 0.617 0.627 0.585
UCM 0.607 0.740 0.795 0.714

S3: ENcP 0.710 0.830 0.860 0.800
UNcM 0.657 0.688 0.705 0.683
UNcP 0.495 0.650 0.680 0.608
UCM 0.715 0.758 0.802 0.758

S4: ENcP 0.940 0.960 0.970 0.957
UNcM 0.792 0.745 0.780 0.772
UNcP 0.727 0.770 0.740 0.746
UCM 0.900 0.958 0.960 0.939

Avg: ENcP 0.750 0.848 0.868 0.823
UNcM 0.619 0.660 0.700 0.660
UNcP 0.602 0.698 0.711 0.670
UCM 0.739 0.822 0.852 0.805

Equal reliabilty No cue Pure block design (ENcP)
Unequal reliability No cue Mixed block design (UNcM)
Unequal reliability No cue Pure block design (UNcP)
Unequal reliability Cue Mixed block design (UCM)



42

first ANOVA described earlier. Again, for the three unequal

reliability conditions the efficiencies represent the aver-

age of the four arrangements. Across all observers and

conditions, weighting efficiency increased as the stimulus

duration increased. To identify whether these differences

were significant, a Monte Carlo simulation was run to esti-

mate the expected variance for qgt The sampling distribu-

tion of nt which best reflected the observers weighting

efficiencies was used to identify significant differences.

The criterion selected for significant differences was

two standard deviations (asi. = 0.04) of this sampling

distribution. Differences in weighting efficiency which

exceeded 0.08 were identified as significant differences.

This was a fairly conservative estimate, considering that

these distribution parameters corresponded best with the

data from the poorest observer. Given this criterion,

weighting efficiency was significantly greater for stimulus

durations of 400 ms or higher, and efficiency was highest at

800 ms. Thus, significant improvements in weighting effi-

ciency at least partially account for the improvement in

overall accuracy found when stimulus duration increased.

Moreover, differences among the observers' weighting

efficiencies for the block-type conditions are consistent

with the differences observed in the overall d' bs measures.

Performance was greatest in the ENcP and UCM conditions.

Both show a significant advantage over the other two unequal

reliability conditions (UNcM and UNcP). This pattern is
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maintained at all stimulus durations and fairly consistent

across the four observers.

Since performance was highest at the longest stimulus

duration, and differences among the conditions were consist-

ent across all levels of stimulus duration, the figures

depicting the separate observers' weights for the unequal

reliability conditions are based on the data obtained at the

800 ms stimulus duration, only. Figures 5-16 show the

observers' average weights for the four arrangements of

source reliability and the three unequal reliability block-

type conditions. There are three figures representing the

three block-type conditions (UNcM, UNcP, and UCM) for each

observer. In each figure there are four graphs representing

the four source reliability arrangements, where a, b, c, and

d represent the left, right, even, and odd arrangements,

respectively. The larger symbols are the average weight

estimates and the smaller symbols are the signal and noise

weight estimates. The solid line represents the optimal

weights for the separate arrangements. All four observers

show similar changes in their weights across the three

conditions, where their weights best match the ideal weights

for the UCM condition.

Table 6 lists the observers' weighting efficiencies for

the conditions found in figures 5-16. Again, only the 800

ms duration is shown. Table 7 shows the average weighting

efficiencies for stimulus duration, arrangement, and block-

type condition. As with the average data, the UCM condition
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Table 6.
Weighting Efficiency Estimates for Arrangement and
the Unequal Reliability Trial-Block Conditions.

Subject
Arrangement UNcM UNcP UCM

Si: Left 0.740 0.880 0.940
Right 0.580 0.820 0.940
Even 0.610 0.690 0.790
Odd 0.800 0.800 0.730

S2: Left 0.650 0.620 0.860
Right 0.560 0.490 0.850
Even 0.630 0.640 0.780
Odd 0.690 0.760 0.690

S3: Left 0.700 0.700 0.770
Right 0.570 0.570 0.780
Even 0.760 0.750 0.810
Odd 0.790 0.700 0.850

S4: Left 0.710 0.840 0.970
Right 0.780 0.730 0.970
Even 0.730 0.600 0.950
Odd 0.900 0.790 0.950

Avg: Left 0.700 0.760 0.885
Right 0.623 0.653 0.885
Even 0.683 0.670 0.833
Odd 0.795 0.763 0.805

Equal reliabilty No cue Pure block design (ENcP)
Unequal reliability No cue Mixed block design (UNcM)
Unequal reliability No cue Pure block design (UNcP)
Unequal reliability Cue Mixed block design (UCM)

I -
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Table 7.
Average weighting efficiency estimates for the
experimental variables (block-type condition,
arrangement and stimulus duration).

Stimulus
Duration Arrangement UNcM UNcP UCM

150 Left 0.640 0.633 0.823
Right 0.520 0.545 0.757
Even 0.643 0.620 0.743
Odd 0.673 0.610 0.635

400 Left 0.668 0.730 0.845
Right 0.585 0.675 0.890
Even 0.660 0.658 0.815
Odd 0.728 0.730 0.740

800 Left 0.700 0.760 0.885
Right 0.623 0.653 0.885
Even 0.683 0.670 0.833
Odd 0.795 0.763 0.805

AVG Left 0.669 0.708 0.851
Right 0.576 0.624 0.844
Even 0.662 0.649 0.797
Odd 0.732 0.701 0.727

Equal reliabilty No cue Pure block design (ENcP)
Unequal reliability No cue Mixed block design (UNcM)
Unequal reliability No cue _Pure block design (UNcP)
Unequal reliability Cue Mixed block design (UCM)
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shows higher weighting efficieýncy than the other two condi-

tions, UNcM and UNcP, for each arrangement and stimulus

duration, except when the most reliable elements were found

in the Odd positions. Table 6 indicates that all four

observer show the same pattern of effects at the 800 ms

stimulus duration. They tended to show a little more varia-

bility, but similar patterns across subjects at the two

shorter stimulus durations.

As with the d'__ data we see a slight, but not signifi-

cant, advantage for grouped arrangements in the UCM condi-

tion, and for the odd arrangement in the UNcM condition

relative to the other arrangements. The interaction between

stimulus duration and arrangement found in the d'obs data

was not supported by differences in observers weighting

efficiencies.

From table 6 we also see that the less practiced observ-

ers (SI, S2, and S3) tend to show the lowest weighting

efficiency in the two non-cued conditions, UNcM and UNcP,

for the right arrangement. The same is true for the shorter

durations. However, once the cue was introduced, efficiency

was indistinguishable for the weighting efficiency for the

left arrangement which was consistently fairly high.

Finally, as far as the observers' residual efficiency, q,

were concerned, the only consistent difference among the

observers was a tendency for residual efficiency to be

higher for the equal reliability condition relative to the

three unequal reliability block-type conditions. The stimu-

I -
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lus duration by arrangement interaction found in the observ-

ers' d' measures was not driven exclusively by changes in

%,t or r*se' but rather by a combination of these ef-

fects.

Discussion

The primary goal of this investigation was to determine

the effects of selected display factors in directing observ-

ers' attention to informative sources. There was an overall

improvement in observer performance as stimulus duration

increased; this was mainly a function of improved weighting

efficiency. In general, when no additional cues to source

reliability were available, weighting effioiency was great-

est when sources were equal rather than unequal in reliabil-

ity. There was a tendency for better performance when more

reliable sources were grouped, rather than distributed in

the cued block-type condition, especially when the stimulus

duration was at least 400 ms. Alternatively, in the no cue

block-type conditions performance was highest when observers

were presented a distributed odd arrangement. These differ-

ences in performance were mostly due to differences found

in the observers' weighting efficiency measures.

When sources have to be prioritized in terms of the

underlying statistical properties of the information, as in

this study, people are limited by both their ability to

estimate these properties (e.g., variability of the source)

and by their ability to then weight the sources accordingly.

The observers' relatively poor performance in the non-cued
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conditions may have been due to their inability to estimate

the variability of the sources when this information was

relevant to their decisions (e.g., the UNcP condition).

That is, the observers may not have been sensitive to the

trial-to--trial variability of the sources. The improvement

in weighting efficiency, given the luminance cue in the UCM

condition, indicates greater attention or weight directed

toward these elements. It does not necessarily suggest that

observers have improved sensitivity to the differences in

element reliability. To test this possibility, observer S4,

contributed data to an additional condition in which gauge

luminance was inversely related to gauge reliability.

Figure 17 shows subject S4's average weight estimates

for the two luminance cue conditions, UCM and reverse cue,

and the four reliability patterns, Grouped-Left and -Right

and Distributed-Even and -Odd. The circles represent a

direct relationship between gauge luminance and reliability,

the UCM condition. The triangles represent the reverse cue

condition. The weights estimated for these two conditions

are nearly identical. This was reflected in the weighting

efficiencies. The largest difference between the two lumi-

nance cue conditions in weighting efficiency was 0.02; for

the Grouped-Left pattern nwt= 0.97 for the UCM condition,

and 7wgt = 0.95 for the reverse cue condition. Thus, at

least on the initial trials in a given block the observer

had to be sensitive to differences in element variability to

detect which elements were more reliable.
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However, there remains a question as to whether or not

observers were actually using trial-to-trial variability of

the sources to make their decisions. Some of the observers

showed a fair amount of accuracy in weighting sources

according to reliability in the UNcM condition where trial-

to-trial variability could not be used to identify which

sources were more reliable. One possible explanation for

this performance is that observers were sensitive to pat-

terns produced by gauge markers when the variability was

low.

On a given trial, the markers of the high reliability

gauges tended to fall at a common vertical position in the

display, causing them to line up as shown in figure 18.

Thus, this pattern may have drawn observers attention,

helping them to identify which sources were more reliable.

After questioning the observers about strategies used on

these trials, it was confirmed that observers were sensitive

to such patterns in the display. Based on this evidence

alone it is not conclusive that obs..rvers were sensitive to

the underlying variability of the sources. Rather it is

more probable that cues provided and the patterns inherent

in displays helped observers to weight sources according to

reliability.

Finally, the especially good performance for the odd

arrangement raises another question. Why is performance so

good for the odd arrangement in the non-cued conditions?

This advantage may be due to the unique characteristics of
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Grouped-Left High

Grouped-Right High

Distributed-Even High

Distributed-odd High

Figure 18. Demonstration of the possible patterns for
four arrangements which observers may have used to
identify the more reliable sources.
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the arrangement. Th2 odd arrangement was the only condition

with five sources, rather than four, which were high in

reliability. As a result, it had more high reliability

sources distributed throughout the visual field, and it was

the only arrangement that had a source high in reliability

located at the fixation point. Secondly, in order to main-

tain equal levels of predicted ideal performance, there

were smaller differences between the variances for high and

low reliability sources. Thus, based on both of these

factors, this condition most closely approximated an equal

reliability condition. If observers resorted to weighting

sources equally when they are under time stress or unable to

identify which sources are reliable, this strategy would

prove most useful in the odd condition.

In conclusion, from this study we can state that when

observers have to utilize information from multiple subordi-

nate displays they are relatively inefficient at identify-

ing differences in reliability among the displays. However,

there is improved efficiency when the display elements are

coded by luminance. The assumption is that this cue, and

possibly other cues, help observer's to prioritize the

information by indicating where attention should be direct-

ed. Additional assistance may be gained by organizing the

displays such that sources similar in reliability are proxi-

mate to one another.



EXPERIMENT 2

Introduction

This study continues the investigation of observers'

ability to use independent visual information sources in

forming detection decisions. Since humans are often

required to make decisions under time stress in many real

world settings, researchers have been interested in identi-

fying means of coding visual information to reduce potential

errors and optimize human performance. One approach is to

assist performance by creating display codes which capital-

ize on our knowledge of human sensory and perceptual mecha-

nisms. For instance, Woods, Wise, and Hanes (1981) reduced

the complexity of integrating multiple independent sensor

values to form a detection decision by combining display

elements into a single geometric form. This allowed human

monitors to use shape distortions to identify important

system states.

The primary concern of this study was to determine

whether two factors related to display element arrangement

affect observers' detection decisions. The first factor

concerns the influence of emergent features on observers'

detection decisions. Emergent features are defined as

properties that arise from the configuration of "simple"

elements that are not identifiable in any given element

65
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(Treisman, 1986). For instance, if the elements are repre-

sented by three line segments, then depending on the

arrangement chosen we could create one of the forms shown in

figure 19. Particular element arrangements produce features

such as angles and intersections which are not observable

given the individual lines. Moreover, some element arrange-

ments produce global features which are recognizable

objects. For instance, the first and last element arrange-

ments in Figure 19 do not possess as strong an object quali-

ty as the triangle found in the middle.

There is mixed evidence in the object perception litera-

ture regarding whether emergent, object-like, features of

simple element arrangements facilitate or hinder detection

of the underlying elements. Some studies have found evi-

dence suggesting an "object-superiority effect." That is,

when a target feature (e.g. a line segment of a given orien-

tation) is embedded in a contextual pattern, observer detec-

tion performance is facilitated when the target feature and

context form a recognizable object (Weisstein & Harris,

1974). Similarly, Ankrum and Palmer (1991) found that

observers were better at detecting differences between two

element arrangements wh-.ch formed objects than between

element arrangements in which one was an object and the

other was part of an object. This enhanced detectability

may be related to the familiarity of the organized pattern

(Purcell & Stewart; 1991), similar to the "word superiority



67

Figure 19. Example of three line-graph arrangements
demonstrating an emergent feature. The middle figure
produces an emergent object-like feature.
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effect" where it is easier to detect a specific letter in a

word than in a nonword (Reicher, 1969).

Others have found contradicting evidence. Pomerantz

(1981) points to evidence suggesting that when elements

perceptually group, the emergent feature created by the

configuration may be more perceptually salient and selective

attention to the underlying elements may be impeded (Pomer-

antz & Schwaitzberg, 1975). Similarly, Navon (1977) found

Stroop interference of global configurations on subjects'

processing of local elements, but not the opposite. Bennett

and Flach (1992) summarize the results from a number of

studies which have applied this concept to real world set-

tings. These studies indicated that an emergent object-like

property had no affect on, or adversely affected, perform-

ance in tasks requiring focused attention to the individual

elements. However, they pointed out that performance had

been facilitated by the same emergent features when the

detection task required information integration.

One hypothesis, tested in earlier studies, stated that

the magnitude of the performance advantage in integration

tasks, relative to selective attention tasks, depended upon

the degree to which the element configuration produced an

object-like feature (Carswell & Wickens, 1987; Wickens &

Andre, 1988). The degree of "objectness" depended on wheth-

er or not the element configuration possessed an enclosed

contour (Wickens & Andre, 1990). However, later evidence

suggested that the important factor was whether or not an
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emergent feature carried important information about the

underlying state, rather than simply the object quality of

the configuration. For instance, Buttigieg and Sanderson

(1991) found that object displays did not always produce the

best performance in integration tasks, whereas "well-mapped"

emergent features did.

However, recent investigations, designed specifically to

address the relationship between the configuration and the

task, have produced mixed results. Some researchers have

found support, suggesting that performance was better when

there was a strong relationship between some property of the

emergent feature and the decision statistic than when this

relationship was weak (Bennett, Toms, & Woods, 1993; Mitch-

ell & Biers, 1992; Schmidt & Elvers, 1992). Others

researchers did not find a performance advantage for emer-

gent features that were "well-mapped" to the decision task

(Sanderson, Haskell, & Flach, 1992).

The second factor addressed in this study concerns the

importance of the relationship between the emergent feature

and the optimal decision statistic for the task. One nice

characteristic of the Theory of Signal Detectability (TSD,

Green and Swets, 1966) paradigm is that we can mathemati-

cally specify the optimal decision statistic in a detection

task. The optimal decision statistic is the likelihood

ratio or some value which is monotonically related to the

likelihood ratio. If there is a direct relationship between

an emergent property in the display (e.g., size or area) and
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the optimal decision statistic, it is expected that the

observers can use changes in the magnitude of this emergent

property to make their decisions.

In this study, observers were presented four independent

informational sources coded as graphical elements in a

visual display. Six display codes were constructed from a

combination of two factors, 1) whether or not the display

element arrangement produced an emergent feature, and 2)

whether or not the emergent feature had some property that

was directly related to the optimal decision statistic (for

the Yes/No task). Observers used this information to per-

form either a Yes/No task or a 4AFC task.

The magnitude of a given source was determined by a

normal random variable which depended on the underlying

state (Signal or Noise). For signal events, the source

values were selected from a distribution with a mean of As

and a standard deviation of as. The values of noise sources

were drawn from a distribution with a mean of An and a

standard deviation of an, where An < As and as= a = ae-

In the Yes/No task, observers had to decide whether all

source values presented on a given trial represented either

a signal state or noise. In the 4AFC task, the observer had

to decide which of four elements represented the signal

event.

If emergent features facilitate the processing of the

underlying elements, then we may find more efficient deci-

sion making performance for both Yes/No and 4AFC decision
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tasks when such features are present. Alternatively, it

these emergent features are processed faster than the under-

lying elements, then decision tasks which require sensi-

tivity to the underlying elements may be hindered by display

codes that possess these features. For instance, in an

equal reliability Yes/No task, sensitivity to the separate

underlying elements is of less importance to performance

than it is in a 4AFC task. As a result, if the emergent

feature hinders observer sensitivity to the underlyii.j

elements, performance on a 4AFC task may be less .fticient

when the information is arranged to form an emergent feature

than when the element arrangement does not posses this

feature.

With respect to the second factor, if the relationship

between the magnitude of some emergent feature property and

the optimal decision statistic is important then we should

see a performance advantage when this relationship is

present. In the current study, this relationship was coded

only for the Yes/No decision task. Two of the six display

arrangements produced an emergent feature in which the width

or the area of this feature was directly related to the

optimal decision statistic for the Yes/No task. Thus, it

was expected that detection performance would be facilitated

in the Yes/No task given these two display codes relative to

the other codes which do not possess this relationship.

Finally, the object-like quality of the emergent feature

was also tested in this study. Some of the element
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arrangements produced emergent features which possessed an

enclosed contour, whereas others did not. If the configural

property of the display arrangement is an important factor

(Carswell & Wickens, 1987), then display arrangements which

possess this property may be more likely to show the expect-

ed emergent feature effects than arrangements without an

enclosed contour.

Method

Subiects

Three of the four subjects who participated in the first

study also contributed data in this study. All observers

were paid an hourly wage plus a bonus based on performance.

Apparatus and Stimuli

Observers were seated in a sound isolated booth approxi-

mately 27 inches away from a 10.5 inch color monitor (EGA).

The monitor was set for maximum contrast. Intensity was set

at approximately 100 cd/mz measured from a uniform white

field covering the monitor. On a given trial, one of six

arrangements of four graphical elements was presented on the

monitor against a gray grid. The maximum horizontal and

vertical visual angles were 13.5" and 4.5°, respectively.

(The separate measures of visual angle for each of the

displays are found on figures 20 and 21.) The values

depicted by the graphical elements were either drawn from a

signal or noise distribution, depending on the trial and

task. The parameters of the signal and noise distributions
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were As = 50 and 0. 10 and , = 40 and on 10, respec-

tively. Element magnitude ranged from 1 to 99.

Figures 20a - 20c depict three line-graph display codes

in which element magnitude was coded by the length (number

of pixels) of a horizontal line segment. Figure 20a repre-

sents the linear likelihood (LIN-LR) arrangement. In the

LIN-LR arrangement, there was a fixed separation between

the end of one line segment and the beginning of the next.

Thus, in the Yes/No task the total length of the display

produced by the separate segments varied directly with the

likelihood ratio. Figures 20b and 20c represent two ver-

sions of the linear non-likelihood arrangement. In both

cases, the onset of each line segment began at a specified

location in the visual field; total display length did not

vary. In one case the elements were arranged horizontally

(LIN-NL), and in the other case they were arranged in a

square (LSQ-NL), to control for differences in visual angle.

Figures 21a - 21c depict three angular displays. The

angle formed by two line segments in a given quadrant was

directly related to-the magnitude of the underlying element.

One end of each line segment was fixed in position on the

display. The opposite ends of the two segments joined to

form an angle. The small arrows in figures 21a - 21c desig-

nate the angles being described. The size of the angle

varied with element magnitude as follows:

Angle = 270 - 2tan"' ((l00-xi)/xi), (22)

where xi is the magnitude of the ith element. In figure

I
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a.) Linear Likelihood (LIN-LR) Arrangement

Yes/No Signal Trial

Yes/No Noise Trial

Average Visual Angle: Horizontal = 6.75"
Vertical = 1.6"

b.) Linear Non-Likelihood Horizontal (LIN-NL) Arrangement

Yes/No Signal Trial

Yes/No Noise Trial

Average Visual Angle: Horizontal = 11.25"
Vertical = 1.6*

c.) Linear Non-Likelihood Square (LSQ-NL) Arrangement

Yes/No Signal Trial Yes/No Noise Trial

F- F H-- F-

Average Visual Angle: Horizontal = 6.2"
Vertical = 6.3*

Figure 20. Line graph display codes. Figures a, b and c
are the Linear Likelihood (LIN-LR), Linear Non-Likeli-
hood (LIN-NL), and Linear Non-Likelihood Square (LSQ-IIL)
displays. Each display was presented in front of a gray
grid and the visual angle subtended is listed at the
bottom of each figure.
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a.) Object Likelihood (OBJ-LR) Arrangement

Yes/No Signal trial Yes/No Noise trial

Average Visual Angle: Horizontal = 6.3"
Vertical = 6.3"

b.) Object Non-Likelihood (OBJ-NL) Arrangement

Yes/No Signal trial Yes/No Noise trial

Average Visual Angle: Horizontal = 6.3"

Vertical = 6.3"

c.) Angular Non-Likelihood (ANG-NL) Arrangement

Yes/No Signal trial Yes/No Noise trial

Average Visual Angle: Horizontal = 6.3"
Vertical = 6.3"

Figure 21. Angular display codes. Figures a, b and c are
the Object Likelihood (OBJ-LR), Object Non-Likelihood
(OBJ-NL), and Angular Non-Likelihood (ANG-NL) displays.
Each display was presented in front of a gray grid and
the visual angle subtended is listed at the bottom of
each figure.

t -
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21a, the smaller element values correspond with angles which

point toward the center of the display. In figures 21b and

21c, smaller element values correspond with angles which

point downward.

In two of the figures (21a and 21b) the elements were

arranged to form an enclosed contour, producing object-like

shapes. In figure 21a the element arrangement produced an

object in which the area was directly related to the likeli-

hood ratio for the Yes/ No task (OBJ-LR). That is,

4

Area = Z100xi. (23)

Figure 21b represents an object-like display that does not

have a property related to the optimal decision statistic

(OBJ-NL). Finally, figure 21c depicts the ANG-NL display

which is identical to the OBJ-NL display; however, it does

not posses a continuous enclosed contour.

Procedure

For the Yes/No task, observers were told to make their

decisions based on the average magnitude of the gauges, and

to rank the likelihood that the evidence represented a

signal by using the "4", "3", "2" and "1" keys of a 101-key

keyboard, where "4" represented "very sure it was a signal"

and "1" represented "noise". Again, "1" and "2" responses

were identified as noise, and "3" and "4" responses were

identified as signals in the analyses. On 4AFC task, observ-

ers were told to identify which of the four gauges had the

greatest magnitude, and thus, represented a signal event.
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Subjects indicated the signal location by using either tile

same keys found in the Yes/No task, or the "Ins", "Home",

"Del" and "End" keys, depending on the element arrangement.

The trial sequence was the same as the first study (see

Figure 4). However, instead of nine line-graph gauges, one

of the six display arrangements described above were pre-

sented for a stimulus duration of 200 ms. (The stimulus

duration was controlled in the same manner as described in

experiment 1.) Each observer received eight blocks of

practice for each of the display arrangements and tasks

before the experimental data was collected. For both the

practice and experimental trials, the display arrangements

were randomly presented and each observer received a differ-

ent random order. In a given session, a subject ran through

eight blocks of the Yes/No task and eight blocks of the 4AFC

task, and they contributed data to eight blocks of one task

before beginning the next task. The order of the tasks

alternated across experimental sessions.

Since performance in the initial experimental blocks was

nearly ideal, a random noise pattern was added to the dis-

plays to degrade performance. The random noise pattern

consisted of 750 white spots, two pixels in width. On each

trial, the locations of the spots were randomly determined.

Thus, the pattern varied across trials. This noise pattern

overlaid the graphical elements and background grid, such

that the extent of the random noise was confined to the

vertical and horizontal dimensions of the background grid.

I -

I -
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Approximately 12% of the grid region was covered by the

random noise pattern.

Subjects performance in the Yes/No task was poorer with

the random noise pattern than without. Overall efficiency

dropped approximately 16% when the random noise was added.

The size of the differences increased. However, the general

pattern of effects did not change. Thus, the experimental

trials included the random noise pattern.

Results
Yes-No Task

The observers' accuracy (d') and mean reaction time

measures for the six display arrangements in the Yes/No task

are shown in figures 22 and 23, respectively. Three panels,

a-c, in each figure represent the individual subjects' data,

and the fourth, d, is the three observers average data.

Each of the subjects d' and reaction time measures are based

on eight blocks of 100 trials, and the error bars represent

one standard error of the mean.

Separate repeated measures ANOVAs were performed on the

observers' d' and reaction time measures, collapsed across

the eight trial blocks. There was an effect of type of

display arrangement (f(5,10)=11.263, p 50.001) on observer

accuracy (d's). Subsequent analytic comparisons, using the

pooled variance as the error term, indicated that perform-

ance was greater for element arrangements that produced

emergent features (F(1,10)=23.2, p •0.001) relative to those

that did not have such features. Whether or not the emer-

gent feature produced an enclosed contour did not influence
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Figure 22. The observers' average performance (d') measures
for the six arrangements in the Yes/No task. Panels a-c
represent the individual subjects and panel d is the
average data. The error bars are one standard error of
the mean.
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Figure 23. The observers' average reaction times measures
(measured from the offset of the mask to response) for
the six conditions in the Yes/No task. Panels a-c
represent the individual subjects and panel d is the
average data. The error bars are one standard error of
the mean.
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pei.fDrmance. However, for the non-emergent feature dis-

plays, performance was significantly better (f(1,10)=30.8, P

:50. 001) for the ANG-NL display relative to the LIN-NL and

LSQ-NL displays. This performance advantage among the non-

emergent feature displays may be a function of the underly-

ing angular element code, especially since the difference

between the ANG-NL and OBJ-NL display arrangements was not

significant.

The effect of the likelihood ratio manipulation was

significant only for the line-graph displays

(f(1,10)=21.499,R 50.001). Performance in the LIN-LR condi-

tion was better than performance given the other two linear

displays, LIN-NL and LSQ-NL. Finally, there was a signifi-

cant difference among the observers' reaction time measures

(E(5,10)=13.4, , R :50-001) for the separate element arrange-

ments. Reaction time was slower given a LSQ-NL display code

relative to the other element arrangements.

4AFC Task

Figures 24 and 25 depict the observers' *accuracy (dI)

and reaction time measures for the six display arrangements

in the 4AFC task. Again, three panels, a-c, in each figure

represent the individual subjects' data and the fourth

panel, d, is the average for the three observers. Each of

the subjects d' and reaction time measures are based on

eight blocks of 100 trials, and the error bars are one

standard error of the mean.
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Figure 24. The observers' average performance (d') measures
for the six arrangements in the 4AFC task. Panels a-c
represent the individual subjects and panel d is the
average data. The error bars are one standard error of
the mean.
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Again, separate repeated measures ANOVAs were performed

on the observers' d' and reaction time measures, collapsed

across the eight trial blocks. There was a significant

effect of display arrangement (F(5,10)=4.134,p 0.05) on

observers' accuracy. Subsequent analytic comparisons, using

the pooled variance for the error term, indicated that there

was not an overall difference between displays with and

without emergent features. However, there was a performance

advantage (E(1,10)=5.63, p SO.05) for display arrangements

that produced an emergent feature with an enclosed contour

(e.g., OBJ displays) relative to an emergent feature without

this property (LIN-LR). There was also a significant

(E(1,10)=11.75, p :0.01) difference between the ANG-NL and

the two line-graph display arrangements that did not possess

an emergent feature (LIN-NL and LSQ-NL), though. Given this

latter difference, these effects may be best characterized

in terms of differences between line-graph and angular

element coding.

Based on the accuracy data alone, observers tended to

show poorer performance when emergent features were present.

The observers showed the lowest performance for the LIN-LR

display arrangement and highest performance for the ANG-NL

display arrangement. In addition, among the angular display

codes all observers showed lowest performance for the OBJ-LR

arrangement.

However, the reaction time data did not completely

support this pattern of effects. Unlike the accuracy data,
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analysis of reaction times indicated that reaction time was

faster (E(1,10)=11.6, p :0.01) for display element arrange-

ments that produced emergent features than those that did

not possess these features. There was evidence for speed-

accuracy tradeoffs among the separate linear and angular

displays. For instance, among the linear displays the LIN-

LR arrangement showed less accuracy, but faster reaction

times than the other two line graph displays. However,

there remained a performance advantage for angular element

coding compared to the LIN-LR display arrangement.

Discussion

There is a great deal of interest from both theoretical

and practical perspectives in how human detection perform-

ance is affected by element configuration. One of the main

issues concerns whether emergent features produced by se-

lected element arrangements help or hinder processing of the

underlying elements. Evidence, so far, suggests that the

impact on performance may depend upon which feature is most

salient (Pomerantz, 1981) and how well this feature relates

to the task being performed (Buttigieg & Sanderson, 1991).

This experiment compared performance in Yes/No and 4AFC

detection tasks, for different arrangements of the line

element components of simple visual displays. From the

Yes/No task data, it was found that observer accuracy was

affected by the display arrangement when observers were

presented a line-graph display code. Observer accuracy was

highest when line-graph display arrangements produced an

I -
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emergent feature (LIN-LR), and performance in this condition

was indistinguishable from the angular display code arrange-

ments which consistently produced superior performance.

Alternatively, the same feature appeared to hinder

performance in the 4AFC task, which required focused atten-

tion to the separate elements. That is, accuracy was rela-

tively low and reaction time was higher for the line-graph

display arrangement which possessed an emergent feature.

Similarly, there was a tendency for poorer performance given

an emergent angular display, OBJ-LR, relative to an non-

emergent angular display, ANG-NL. This pattern of effects

would be expected if attention is automatically directed

toward the emergent feature, and additional processing

capacity has to be invoked to gather information from the

underlying elements (Navon, 1977; Pomerantz & Schwaitzberg,

1975).

Although there is no strong evidence suggesting an

effect of the relationship between the emergent feature and

the decision statistic, it is not possible to completely

rule out this factor. For instance, in the Yes/No task the

emergent feature advantage observed for the LIN-LR arrange-

ment relative to the other line graph displays could also be

explained as a difference due to the relationship between

the emergent feature and the decision statistic. This is

true because the LIN-LR arrangement possessed both factors,

where the other two displays possessed neither of these

factors. It was only by comparing performance across tasks

I -
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that we could draw conclusions about which factors were

influencing performance. Furthermore, some caution should

be exercised when interpreting the results since the poor

performance observed in the LIN-LR display in the 4AFC task

may be related to masking effects of processing nearby items

in the visual field (Eriksen & Eriksen, 1974).

Wickens and others have argued that this pattern of

effects may be explained in terms of the proximity compati-

bility principle (Andre & Wickens, 1988; Carswell & Wickens,

1987; Wickens, 1992). According to the proximity compati-

bility principle, tasks that require integration are better

supported by display arrangements which have high perceptual

proximity; whereas, tasks which require focused attention

are better supported by arrangements which have low percep-

tual proximity. If there were more distinguishable differ-

ences among the angular element display arrangements which

produced consistently high performance, it may be possible

to further eliminate alternative hypotheses.

This raises another question. Why was performance so

good for displays composed of angular elements? One expla-

nation for this angular display code advantage is that it

is easier to extract magnitude information when it is coded

as changes in the size of an angle than when it is coded as

the length of a line segment. That is, the angle may empha-

size the scale of the underlying element magnitude. Alter-

natively, observers may have used the direction of the angle

rather than the size of the angle or the area enclosed by
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the angle to make their decisions. For instance, observers

may have identified angles pointing toward the center of the

display (OBJ-LR) or downward (OFJ-NL or ANG-NL) as repre-

senting "noise," and the opposite as indicating "signal"

events. Thus, their decisions would have been based on

binary information rather than the actual magnitudes of the

underlying elements.

A simple test of the latter possibility would be to

conduct a study in which the tasks and displays are identi-

cal to those used in the preceding study. However, the

distribution parameters would be manipulated so that in one

case observers could use the direction of the angle and in

the other cases they could not. For instance, if the under-

lying signal and noise distributions had relatively small or

large means then most of the angles would be either small or

large, respectively. Thus, the direction of the angles

would be less useful in forming a detection dezision. If

observers are using the magnitude of the angles, there

should be no differences among the selected pairs of means,

as long as the distance between the distribution means and

the standard deviations were held constant.



GENERAL CONCLUSIONS

We investigated whether selected display coding factors

would assist observers in visual signal detection. The

factors investigated were partially selected based on knowl-

edge of the predicted optimal observer as defined in the TSD

paradigm (Green & Swets, 1966). The evidence from these

studies suggests potential means for coding displays that

will assist observers in forming detection decisions.

In the first study, observers performed a Yes/No detec-

tion task where the separate sources differed in reliabili-

ty. The main concern was to determine whether observers

included these differences in source reliability in their

detection decisions. Evidence from research on human deci-

sion making suggests that when informational sources differ

in informativeness, decision makers generally do not consid-

er these differences in forming their decisions. Instead,

they acts as though the sources are equally informative

(Wickens, 1984), and weight them accordingly. Berg (1990),

also, found that observers were better at weighting sources

equal rather than unequal in reliability in an auditory

frequency discrimination task.

The results from the first study were consistent with

prior evidence; observers were generally better at weighting

sources equal rather than unequal in reliability. However,

89
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when sources high in reliability were cued by gauge lumi-

nance, weighting efficiency waL equivalent to the equal

reliability condition. Furthermore, the best performance

and highest weighting efficiency occurred when sources high

in reliability were cued by gauge luminance, presented at

long stimulus durations, and contiguous rather than distrib-

uted throughout the visual field. The performance advantage

associated with grouped source reliabilities is consistent

with the results of Posner et al. (1980).

Examination of the observers' weights indicate that

observers tended to use a relatively equal weighting strate-

gy when there was uncertainty about the location of the more

reliable sources. This may partly explain the performance

advantage for the odd arrangement in the non-cued condi-

tions, since this arrangement was most similar to an equal

reliability pattern. However, based on the current evidence

it is not clear what factor accounts for this advantage, and

why it is not maintained in the cued condition. A future

study which examines other factors that may contribute to

this advantage may help to understand these effects. For

instance, is it the size of the difference between sources

high and low in reliability or the distribution of sources

reliabilities which produce this advantage?

Despite the relatively equal weighting pattern used in

the non-cued conditions, observers showed moderate sensitiv-

ity to differences in source reliability. This was true

even when observers could not use the trial-to-trial source
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variability to identify which were more reliable (e.g. the

UNcM condition). This may be related to the consistency in

the vertical displacements of the gauge markers for the high

reliability sources. The fairly straight line produced by

the gauge markers common vertical positions in the visual

field may have engaged observers attention, helping them to

identify which sources were more reliable. Thus, an "emer-

gent" pattern produced by the gauge marker arrangement may

have assisted observers in this task.

Whether or not such "emergent" features assist observers

in making detection decisions was addressed in the second

study. The second study examined the effects of two factors

related to display element arrangement on observers' detec-

tion decisions for both Yes/No and 4AFC detection tasks.

The first factor was whether or not the display element

arrangement produced an emergent feature. That is, a fea-

ture which is produced by the configuration of the underly-

ing elements, but not present in any given element (Treis-

man, 1986). The second factor was whether or not the emer-

gent feature had some property (e.g. size or area) that was

directly related to the optimal decision statistic for the

Yes/No detection task. Based on current evidence, many

argue that the important factor is the relationship between

the task and the display code (Bennett & Flach, 1992; Ben-

net, Toms, & Woods, 1993; Schmidt & Elvers, 1992; Sanderson

et al., 1989).
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Arranging the line graph displays to produce an emergent

feature, improved Yes/No performance and impaired 4AFC per

formance. However, it was not possible to completely rule

out the effects of the coded relationship between the opti-

mal detection statistic and some property of the emergent

feature. The angular display arrangements consistently

produced high performance, and there were no distinguishable

differences among the separate angular arrangements, for

either task.

This angular advantage may be a function of at least two

possible factors. First of all, it may be easier to extract

magnitude information when it is coded as changes in the

size of an angle than when it is coded as the length of a

line segment. That is, the angle may emphasize the scale of

the underlying element magnitude. Alternatively, the ob-

servers may have been able to use the direction of the angle

to make their decisions about the underlying state of the

system. A future study may provide some insights into

whether or not these factors where, in fact, producing this

performance advantage. Bennett, Toms, and Woods (1993)

point out that emphasizing the scale of the underlying

element magnitude helps observers to process the underlying

elements. This is especially important when attention has

to be focused on elements which are arranged to produce an

emergent feature.

Thus, by defining the optimal observer we can (1) iden-

tify how well humans perform relative to the theoretical
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ideal, and (2) identify .. clans of aiding performance based on

what we discover is causing inferior performance. For

instance, introducing a luminance cue helps observers to

prioritize sources according to their informativeness.

Furthermore, using an angular display code in visual signal

detection tasks can produce nearly ideal performance in both

Yes/No and 4AFC detection tasks. Otherwise, designers

should attempt to create display codes which possess "well-

mapped" emergent features.
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APPENDIX A
YES/NO DECISION STATISTIC

In a Yes/No detection task an observer is presented n

independent sources of information, x,, x 2, . .. , xn. On a

given trial, each element represents one of two alternatives

(signal or noise). On signal trials, all xi are sampled

from a distribution with the parameters gsi and asi. Noise

trials are sampled from a distribution with parameters gni

and ani, where asi = ani = Oei, and IM < Ini".

The likelihood that this evidence represents a signal is

related to the probability of their joint occurrence,

L(x,,x 21 ... ,xn) = L(x 1)*L(x 2 )...*L(x3 ). (Al)

The likelihood ratio for a given source, xp, is the ratio of

the conditional probabilities for that source. That is,
f (xi/s) [1/ (27ae! ) ý]EXP[-k ( (xi-gsi)/aei)' 2

L(x,) = -(A2)
f (xi/n) [i/(2ra ; ) k ]EXP[-k (( (X-And)/a i(A].

Once the equation is reduced, based on the general laws of

exponents we have the following:

L(xi) = EXP[-k ( ( (xii-si)/aei)2  - ((X--I*Lni)/Ge) 2 ) ]. (A3)

By taking the natural logarithm of the likelihood ratio,

and, again reducing the equation we have the following:

inL(xi) = xi((/•s -gni)/ae) - ((- )/a (M)Ii el

Then, for the combined evidence, l(xl,x2 ,x 3 ) it turns out

that a weighted sum of the evidence, x,, is directly related

to the likelihood ratio,

n
inL(xj, x2,".. "'Xn = ( s- ? • ' n )/ e)Xi (•i) Oi) (A5)
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APPENDIX B

BERG'S THEORETICAL SOLUTION OF THE WEIGHTS

Appendix A showed that the optimal decision statistic

for a Yes/No task is a weighted sum of the evidence (Green &

Swets, 1966). Berg's Conditional-On-A-Single-Stimulus

(COSS) technique is based on this assumption. That is, the

observer responds "signal" when the evidence, xi, weighted

by some arbitrary number, a,, surpasses some criterion

value, D,

n
Zaixi > D, (BI)

otherwise the observer responds "noise." In the theoretical

solution of the individual weights Berg begins by isolating

a single element, x,, on the left side of equation BI,

producing the following inequality:

n

xi > D -[Eajxj / ai], given i 0 j. (B2)

Then, a new variable, Yi, is substituted for the right side

of the inequality. Yi is also normally distributed since it

represents the sum of independent, normally distributed,

random variables, x1 , and has the parameters:

n
E[Y1 ] = D - [ia xj / ai]

j
(B3)

n

Var[Y i = ae? / a?

Given a signal trial and a particular source, xi, the proba-

bility of saying "signal" given xi is
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P(SIxies) = f (uls)du, (B4)

where f(xls) is a normal density function with a mean =

E[Yils] and a variance = VAR[YjIs]. A similar density

function exits for noise trials.

Berg uses the sum of the variance of the normal density,

VAR(Yi], and the variance of the original xi, ae , to derive

the estimated weights. One element, in this case x,, is set

to unity to solve for the remaining weights (k=l..m) as

shown below,

n
VAR[Y.] + aa! a! a2

+ el ej Ia ak

= -- (B5)
n

VAR[Yk] + ae- ZaIae /e a aa
Ik

In the actual derivation of the weights, we know the values

of a •. We need to find the values of VAR[Y1 ] given the two

types of trials (signal and noise), and we need to specify

which element is set to unity. The values VAR[YJ] are

estimated by finding the variances of the cumulative nor-

mals with the best Chi-square fits to the observer's COSS

functions. Selection of the element to be set to unity is

arbitrary; the center element, x., was selected in this

study.



APPENDIX C
4AFC DECISION STATISTIC

In a Four-Alternative-Forced-Choice task an observer is

presented four independent sources of information, x1 ,

x2 ,x 3 ,x 4 . On a given trial, three sources represent noise

and their values are drawn from a normal distribution with a

mean, An, and a standard deviation, an' The value of the

remaining source is drawn from a distribution with a mean,

AS and a standard deviation, as, where An < gs, and c. = an

= ae. The observer has to decide which source represents

the signal event. That is, in a 4AFC task, the observer has

to decide which of the following alternatives is true:

<s,n,n,n>, <n,s,n,n>, <n,n,s,n>, or <n,n,n,s>.

To simplify the derivation of the optimal decision

statistic, Green (1992) considers the four alternatives as

representing four possible signals (for instance <s,n,n,n>

would equal Sgj) which are compared with noise alone,

<n,n,n,n>. That is, if x = <x1 , x2, x3 , x 4> then

f (xl/s) f (x 2/n) f (x 3/n) f (x 4/n)
1 (xI Sg,) = (Cl)

f (xl/n) f(x 2/n) f (xln) f(x 4/n).

Once we substitute the definition for the conditional proba-

bilities and generalize the equation for all possible Sg1,

equation C1 becomes

m
M JEXP[-ý ((xj-An) /a') 2 ]EXP[-12 ((xi-gs)/Oe :

l(x Sgi)= -j (C2)
m

M fEXP[-L((Xj-n)/ae)' 2 ]EXP[-½((x1-un)/o) ,
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where j # i, M = (i/(2roa)f 12 ), and m = 4. Once we reduce

the equation we have the following:

l(xISg1 ) = EXP[xj((As-.i,)/oa) - i((' -,W /l )). (C3)

Thus, the optimal decision statistic is to choose the larg-

est value, xi, since it is directly related to the largest

likelihood ratio.

U -



APPENDIX D
RELATIONSHIP BETWEEN YES/NO d' AND mAFC PERCENT CORRECT

Green (1992) shows that the integral in equation 19 can

be expressed in terms of a Yes/No ROC since the same proba-

bility density functions, f(xls) and f(xln), can be used to

define the hit and false alarm probabilities. If we let a

specific signal value, xs, equal u the false alarm probabil-

ity is equal to

PU (S I n) = f(xin)dx, (Dl)
Ju

and the hit probability is equal to

P (S I s) = [f(xis)dx. (D2)
ju

The complements of these values are

1 - Pu(SIn) = rf(xfln)dx, and (D3)
J--w

1 - Pu(SIs) = [f(xls)dx, respectively. (D4)

Taking the derivative of equation D4, we have the following,

-dPu(SIs) = f(uIs)du (D5)

Then by substituting equations D3 and D5 into equation 19.

Green (1992) produces the following equation:

P2 (C) Go [I-Pu (S In) ] -dPu (S Is) .(D6)

When the criterion value is low, u is -m, then the nit

probability will be high, P(S/s) = 1. Similarly, when the

criterion value is high, u = c, then the hit probability is

103



104

low, P(S/s) = 0. So the limits of integration can be

replaced by these values, and their order is switched by

changing the sign of the integral, leading to the following

equation: 1
P 2 (C) = [I-Pu (Sin) ]dP,(SIs) (D7)

Jo

where the right side of this equation is equal to the area

under a Yes/No ROC.

Green (1992), then shows that equation D7 can be rewrit-

ten for m alternatives, where m > 2. For an m-alternative

forced-choice task, as the one used in the second study,

there are m-i noise samples. The probability of a correct

response in this case is equal to the probability that the

signal sample, x. (or in this discussion u), is greater

than all m-i noise samples. Thus, equation D7 is rewritten

to account for the m-i noise samples giving us the following

equation:

PM(C) = [1-Pu (SIn)]m-ldPu (Sis). (D8)
j 0
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